sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(763, base_ring=CyclotomicField(54))
M = H._module
chi = DirichletCharacter(H, M([9,35]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(192,763))
         
     
    
  
   | Modulus: |  \(763\) |   |  
   | Conductor: |  \(763\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(54\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  odd |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{763}(129,\cdot)\)
  \(\chi_{763}(145,\cdot)\)
  \(\chi_{763}(192,\cdot)\)
  \(\chi_{763}(213,\cdot)\)
  \(\chi_{763}(278,\cdot)\)
  \(\chi_{763}(292,\cdot)\)
  \(\chi_{763}(306,\cdot)\)
  \(\chi_{763}(339,\cdot)\)
  \(\chi_{763}(388,\cdot)\)
  \(\chi_{763}(411,\cdot)\)
  \(\chi_{763}(465,\cdot)\)
  \(\chi_{763}(467,\cdot)\)
  \(\chi_{763}(523,\cdot)\)
  \(\chi_{763}(530,\cdot)\)
  \(\chi_{763}(542,\cdot)\)
  \(\chi_{763}(647,\cdot)\)
  \(\chi_{763}(682,\cdot)\)
  \(\chi_{763}(754,\cdot)\)
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((437,442)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{35}{54}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |       
    
    
      | \( \chi_{ 763 }(192, a) \) | 
      \(-1\) | \(1\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{47}{54}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{54}\right)\) | \(e\left(\frac{4}{27}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{20}{27}\right)\) | \(e\left(\frac{10}{27}\right)\) | \(e\left(\frac{25}{54}\right)\) | \(e\left(\frac{23}{54}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)
         
     
    
    
        
        sage:chi.gauss_sum(a)
         
     
    
    
        
        pari:znchargauss(g,chi,a)
         
     
    
    
        
        sage:chi.jacobi_sum(n)
         
     
    
    
        
        sage:chi.kloosterman_sum(a,b)