Properties

Label 7616.gb
Modulus $7616$
Conductor $544$
Order $16$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7616, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([0,10,0,15])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(57,7616)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(7616\)
Conductor: \(544\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 544.bv
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.0.13200596365472076270679746481196367872.1

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(9\) \(11\) \(13\) \(15\) \(19\) \(23\) \(25\) \(27\)
\(\chi_{7616}(57,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(-1\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{7}{16}\right)\)
\(\chi_{7616}(617,\cdot)\) \(-1\) \(1\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(-1\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{13}{16}\right)\)
\(\chi_{7616}(1289,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(-1\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{16}\right)\)
\(\chi_{7616}(1625,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(-1\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{11}{16}\right)\)
\(\chi_{7616}(1737,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(-1\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{9}{16}\right)\)
\(\chi_{7616}(2409,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(-1\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{5}{16}\right)\)
\(\chi_{7616}(5209,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(-1\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{16}\right)\)
\(\chi_{7616}(6777,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(-1\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{15}{16}\right)\)