Properties

Label 7581.cv
Modulus $7581$
Conductor $361$
Order $57$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7581, base_ring=CyclotomicField(114)) M = H._module chi = DirichletCharacter(H, M([0,0,2])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(64,7581)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(7581\)
Conductor: \(361\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(57\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 361.i
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{57})$
Fixed field: Number field defined by a degree 57 polynomial

First 31 of 36 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(8\) \(10\) \(11\) \(13\) \(16\) \(17\) \(20\)
\(\chi_{7581}(64,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{57}\right)\) \(e\left(\frac{2}{57}\right)\) \(e\left(\frac{4}{57}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{5}{57}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{44}{57}\right)\) \(e\left(\frac{4}{57}\right)\) \(e\left(\frac{55}{57}\right)\) \(e\left(\frac{2}{19}\right)\)
\(\chi_{7581}(106,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{57}\right)\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{56}{57}\right)\) \(e\left(\frac{14}{19}\right)\) \(e\left(\frac{13}{57}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{46}{57}\right)\) \(e\left(\frac{56}{57}\right)\) \(e\left(\frac{29}{57}\right)\) \(e\left(\frac{9}{19}\right)\)
\(\chi_{7581}(463,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{57}\right)\) \(e\left(\frac{8}{57}\right)\) \(e\left(\frac{16}{57}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{20}{57}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{5}{57}\right)\) \(e\left(\frac{16}{57}\right)\) \(e\left(\frac{49}{57}\right)\) \(e\left(\frac{8}{19}\right)\)
\(\chi_{7581}(505,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{57}\right)\) \(e\left(\frac{37}{57}\right)\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{7}{57}\right)\) \(e\left(\frac{2}{19}\right)\) \(e\left(\frac{16}{57}\right)\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{20}{57}\right)\) \(e\left(\frac{18}{19}\right)\)
\(\chi_{7581}(862,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{57}\right)\) \(e\left(\frac{14}{57}\right)\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{35}{57}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{23}{57}\right)\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{43}{57}\right)\) \(e\left(\frac{14}{19}\right)\)
\(\chi_{7581}(904,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{57}\right)\) \(e\left(\frac{46}{57}\right)\) \(e\left(\frac{35}{57}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{1}{57}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{43}{57}\right)\) \(e\left(\frac{35}{57}\right)\) \(e\left(\frac{11}{57}\right)\) \(e\left(\frac{8}{19}\right)\)
\(\chi_{7581}(1261,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{57}\right)\) \(e\left(\frac{20}{57}\right)\) \(e\left(\frac{40}{57}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{50}{57}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{41}{57}\right)\) \(e\left(\frac{40}{57}\right)\) \(e\left(\frac{37}{57}\right)\) \(e\left(\frac{1}{19}\right)\)
\(\chi_{7581}(1303,\cdot)\) \(1\) \(1\) \(e\left(\frac{56}{57}\right)\) \(e\left(\frac{55}{57}\right)\) \(e\left(\frac{53}{57}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{52}{57}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{13}{57}\right)\) \(e\left(\frac{53}{57}\right)\) \(e\left(\frac{2}{57}\right)\) \(e\left(\frac{17}{19}\right)\)
\(\chi_{7581}(1660,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{57}\right)\) \(e\left(\frac{26}{57}\right)\) \(e\left(\frac{52}{57}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{8}{57}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{2}{57}\right)\) \(e\left(\frac{52}{57}\right)\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{7}{19}\right)\)
\(\chi_{7581}(1702,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{57}\right)\) \(e\left(\frac{7}{57}\right)\) \(e\left(\frac{14}{57}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{46}{57}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{40}{57}\right)\) \(e\left(\frac{14}{57}\right)\) \(e\left(\frac{50}{57}\right)\) \(e\left(\frac{7}{19}\right)\)
\(\chi_{7581}(2059,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{57}\right)\) \(e\left(\frac{32}{57}\right)\) \(e\left(\frac{7}{57}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{23}{57}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{20}{57}\right)\) \(e\left(\frac{7}{57}\right)\) \(e\left(\frac{25}{57}\right)\) \(e\left(\frac{13}{19}\right)\)
\(\chi_{7581}(2101,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{57}\right)\) \(e\left(\frac{16}{57}\right)\) \(e\left(\frac{32}{57}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{40}{57}\right)\) \(e\left(\frac{6}{19}\right)\) \(e\left(\frac{10}{57}\right)\) \(e\left(\frac{32}{57}\right)\) \(e\left(\frac{41}{57}\right)\) \(e\left(\frac{16}{19}\right)\)
\(\chi_{7581}(2500,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{57}\right)\) \(e\left(\frac{25}{57}\right)\) \(e\left(\frac{50}{57}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{37}{57}\right)\) \(e\left(\frac{50}{57}\right)\) \(e\left(\frac{32}{57}\right)\) \(e\left(\frac{6}{19}\right)\)
\(\chi_{7581}(2857,\cdot)\) \(1\) \(1\) \(e\left(\frac{22}{57}\right)\) \(e\left(\frac{44}{57}\right)\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{53}{57}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{56}{57}\right)\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{13}{57}\right)\) \(e\left(\frac{6}{19}\right)\)
\(\chi_{7581}(2899,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{11}{57}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{7}{57}\right)\) \(e\left(\frac{11}{57}\right)\) \(e\left(\frac{23}{57}\right)\) \(e\left(\frac{15}{19}\right)\)
\(\chi_{7581}(3256,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{57}\right)\) \(e\left(\frac{50}{57}\right)\) \(e\left(\frac{43}{57}\right)\) \(e\left(\frac{6}{19}\right)\) \(e\left(\frac{11}{57}\right)\) \(e\left(\frac{14}{19}\right)\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{43}{57}\right)\) \(e\left(\frac{7}{57}\right)\) \(e\left(\frac{12}{19}\right)\)
\(\chi_{7581}(3298,\cdot)\) \(1\) \(1\) \(e\left(\frac{50}{57}\right)\) \(e\left(\frac{43}{57}\right)\) \(e\left(\frac{29}{57}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{22}{57}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{29}{57}\right)\) \(e\left(\frac{14}{57}\right)\) \(e\left(\frac{5}{19}\right)\)
\(\chi_{7581}(3655,\cdot)\) \(1\) \(1\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{56}{57}\right)\) \(e\left(\frac{55}{57}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{26}{57}\right)\) \(e\left(\frac{2}{19}\right)\) \(e\left(\frac{35}{57}\right)\) \(e\left(\frac{55}{57}\right)\) \(e\left(\frac{1}{57}\right)\) \(e\left(\frac{18}{19}\right)\)
\(\chi_{7581}(3697,\cdot)\) \(1\) \(1\) \(e\left(\frac{26}{57}\right)\) \(e\left(\frac{52}{57}\right)\) \(e\left(\frac{47}{57}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{16}{57}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{4}{57}\right)\) \(e\left(\frac{47}{57}\right)\) \(e\left(\frac{5}{57}\right)\) \(e\left(\frac{14}{19}\right)\)
\(\chi_{7581}(4054,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{5}{57}\right)\) \(e\left(\frac{10}{57}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{41}{57}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{53}{57}\right)\) \(e\left(\frac{10}{57}\right)\) \(e\left(\frac{52}{57}\right)\) \(e\left(\frac{5}{19}\right)\)
\(\chi_{7581}(4096,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{57}\right)\) \(e\left(\frac{4}{57}\right)\) \(e\left(\frac{8}{57}\right)\) \(e\left(\frac{2}{19}\right)\) \(e\left(\frac{10}{57}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{8}{57}\right)\) \(e\left(\frac{53}{57}\right)\) \(e\left(\frac{4}{19}\right)\)
\(\chi_{7581}(4453,\cdot)\) \(1\) \(1\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{11}{57}\right)\) \(e\left(\frac{22}{57}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{56}{57}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{14}{57}\right)\) \(e\left(\frac{22}{57}\right)\) \(e\left(\frac{46}{57}\right)\) \(e\left(\frac{11}{19}\right)\)
\(\chi_{7581}(4495,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{57}\right)\) \(e\left(\frac{13}{57}\right)\) \(e\left(\frac{26}{57}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{4}{57}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{1}{57}\right)\) \(e\left(\frac{26}{57}\right)\) \(e\left(\frac{44}{57}\right)\) \(e\left(\frac{13}{19}\right)\)
\(\chi_{7581}(4852,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{57}\right)\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{14}{57}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{32}{57}\right)\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{40}{57}\right)\) \(e\left(\frac{17}{19}\right)\)
\(\chi_{7581}(4894,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{57}\right)\) \(e\left(\frac{22}{57}\right)\) \(e\left(\frac{44}{57}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{55}{57}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{44}{57}\right)\) \(e\left(\frac{35}{57}\right)\) \(e\left(\frac{3}{19}\right)\)
\(\chi_{7581}(5251,\cdot)\) \(1\) \(1\) \(e\left(\frac{40}{57}\right)\) \(e\left(\frac{23}{57}\right)\) \(e\left(\frac{46}{57}\right)\) \(e\left(\frac{2}{19}\right)\) \(e\left(\frac{29}{57}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{50}{57}\right)\) \(e\left(\frac{46}{57}\right)\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{4}{19}\right)\)
\(\chi_{7581}(5293,\cdot)\) \(1\) \(1\) \(e\left(\frac{44}{57}\right)\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{5}{57}\right)\) \(e\left(\frac{6}{19}\right)\) \(e\left(\frac{49}{57}\right)\) \(e\left(\frac{14}{19}\right)\) \(e\left(\frac{55}{57}\right)\) \(e\left(\frac{5}{57}\right)\) \(e\left(\frac{26}{57}\right)\) \(e\left(\frac{12}{19}\right)\)
\(\chi_{7581}(5650,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{57}\right)\) \(e\left(\frac{29}{57}\right)\) \(e\left(\frac{1}{57}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{44}{57}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{11}{57}\right)\) \(e\left(\frac{1}{57}\right)\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{10}{19}\right)\)
\(\chi_{7581}(5692,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{57}\right)\) \(e\left(\frac{40}{57}\right)\) \(e\left(\frac{23}{57}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{43}{57}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{25}{57}\right)\) \(e\left(\frac{23}{57}\right)\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{2}{19}\right)\)
\(\chi_{7581}(6049,\cdot)\) \(1\) \(1\) \(e\left(\frac{46}{57}\right)\) \(e\left(\frac{35}{57}\right)\) \(e\left(\frac{13}{57}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{2}{57}\right)\) \(e\left(\frac{6}{19}\right)\) \(e\left(\frac{29}{57}\right)\) \(e\left(\frac{13}{57}\right)\) \(e\left(\frac{22}{57}\right)\) \(e\left(\frac{16}{19}\right)\)
\(\chi_{7581}(6091,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{57}\right)\) \(e\left(\frac{49}{57}\right)\) \(e\left(\frac{41}{57}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{37}{57}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{52}{57}\right)\) \(e\left(\frac{41}{57}\right)\) \(e\left(\frac{8}{57}\right)\) \(e\left(\frac{11}{19}\right)\)