Properties

Label 7581.4796
Modulus $7581$
Conductor $1083$
Order $114$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7581, base_ring=CyclotomicField(114)) M = H._module chi = DirichletCharacter(H, M([57,0,7]))
 
Copy content pari:[g,chi] = znchar(Mod(4796,7581))
 

Basic properties

Modulus: \(7581\)
Conductor: \(1083\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(114\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1083}(464,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 7581.ds

\(\chi_{7581}(8,\cdot)\) \(\chi_{7581}(50,\cdot)\) \(\chi_{7581}(407,\cdot)\) \(\chi_{7581}(449,\cdot)\) \(\chi_{7581}(806,\cdot)\) \(\chi_{7581}(848,\cdot)\) \(\chi_{7581}(1205,\cdot)\) \(\chi_{7581}(1247,\cdot)\) \(\chi_{7581}(1604,\cdot)\) \(\chi_{7581}(1646,\cdot)\) \(\chi_{7581}(2003,\cdot)\) \(\chi_{7581}(2045,\cdot)\) \(\chi_{7581}(2402,\cdot)\) \(\chi_{7581}(2444,\cdot)\) \(\chi_{7581}(2801,\cdot)\) \(\chi_{7581}(2843,\cdot)\) \(\chi_{7581}(3200,\cdot)\) \(\chi_{7581}(3242,\cdot)\) \(\chi_{7581}(3599,\cdot)\) \(\chi_{7581}(3641,\cdot)\) \(\chi_{7581}(3998,\cdot)\) \(\chi_{7581}(4397,\cdot)\) \(\chi_{7581}(4439,\cdot)\) \(\chi_{7581}(4796,\cdot)\) \(\chi_{7581}(4838,\cdot)\) \(\chi_{7581}(5195,\cdot)\) \(\chi_{7581}(5237,\cdot)\) \(\chi_{7581}(5594,\cdot)\) \(\chi_{7581}(5636,\cdot)\) \(\chi_{7581}(5993,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{57})$
Fixed field: Number field defined by a degree 114 polynomial (not computed)

Values on generators

\((2528,6499,1807)\) → \((-1,1,e\left(\frac{7}{114}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(20\)
\( \chi_{ 7581 }(4796, a) \) \(1\)\(1\)\(e\left(\frac{32}{57}\right)\)\(e\left(\frac{7}{57}\right)\)\(e\left(\frac{85}{114}\right)\)\(e\left(\frac{13}{19}\right)\)\(e\left(\frac{35}{114}\right)\)\(e\left(\frac{29}{38}\right)\)\(e\left(\frac{23}{114}\right)\)\(e\left(\frac{14}{57}\right)\)\(e\left(\frac{43}{114}\right)\)\(e\left(\frac{33}{38}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 7581 }(4796,a) \;\) at \(\;a = \) e.g. 2