Properties

Label 7581.31
Modulus $7581$
Conductor $2527$
Order $114$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7581, base_ring=CyclotomicField(114)) M = H._module chi = DirichletCharacter(H, M([0,19,101]))
 
Copy content pari:[g,chi] = znchar(Mod(31,7581))
 

Basic properties

Modulus: \(7581\)
Conductor: \(2527\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(114\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2527}(31,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 7581.df

\(\chi_{7581}(31,\cdot)\) \(\chi_{7581}(103,\cdot)\) \(\chi_{7581}(502,\cdot)\) \(\chi_{7581}(829,\cdot)\) \(\chi_{7581}(901,\cdot)\) \(\chi_{7581}(1228,\cdot)\) \(\chi_{7581}(1300,\cdot)\) \(\chi_{7581}(1627,\cdot)\) \(\chi_{7581}(1699,\cdot)\) \(\chi_{7581}(2026,\cdot)\) \(\chi_{7581}(2425,\cdot)\) \(\chi_{7581}(2497,\cdot)\) \(\chi_{7581}(2824,\cdot)\) \(\chi_{7581}(2896,\cdot)\) \(\chi_{7581}(3223,\cdot)\) \(\chi_{7581}(3295,\cdot)\) \(\chi_{7581}(3622,\cdot)\) \(\chi_{7581}(3694,\cdot)\) \(\chi_{7581}(4021,\cdot)\) \(\chi_{7581}(4093,\cdot)\) \(\chi_{7581}(4420,\cdot)\) \(\chi_{7581}(4492,\cdot)\) \(\chi_{7581}(4819,\cdot)\) \(\chi_{7581}(4891,\cdot)\) \(\chi_{7581}(5218,\cdot)\) \(\chi_{7581}(5290,\cdot)\) \(\chi_{7581}(5617,\cdot)\) \(\chi_{7581}(5689,\cdot)\) \(\chi_{7581}(6016,\cdot)\) \(\chi_{7581}(6088,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{57})$
Fixed field: Number field defined by a degree 114 polynomial (not computed)

Values on generators

\((2528,6499,1807)\) → \((1,e\left(\frac{1}{6}\right),e\left(\frac{101}{114}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(20\)
\( \chi_{ 7581 }(31, a) \) \(1\)\(1\)\(e\left(\frac{25}{114}\right)\)\(e\left(\frac{25}{57}\right)\)\(e\left(\frac{43}{114}\right)\)\(e\left(\frac{25}{38}\right)\)\(e\left(\frac{34}{57}\right)\)\(e\left(\frac{2}{57}\right)\)\(e\left(\frac{56}{57}\right)\)\(e\left(\frac{50}{57}\right)\)\(e\left(\frac{15}{38}\right)\)\(e\left(\frac{31}{38}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 7581 }(31,a) \;\) at \(\;a = \) e.g. 2