Properties

Label 7581.2678
Modulus $7581$
Conductor $7581$
Order $114$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7581, base_ring=CyclotomicField(114)) M = H._module chi = DirichletCharacter(H, M([57,76,3]))
 
Copy content pari:[g,chi] = znchar(Mod(2678,7581))
 

Basic properties

Modulus: \(7581\)
Conductor: \(7581\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(114\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 7581.dp

\(\chi_{7581}(170,\cdot)\) \(\chi_{7581}(284,\cdot)\) \(\chi_{7581}(569,\cdot)\) \(\chi_{7581}(683,\cdot)\) \(\chi_{7581}(968,\cdot)\) \(\chi_{7581}(1367,\cdot)\) \(\chi_{7581}(1481,\cdot)\) \(\chi_{7581}(1766,\cdot)\) \(\chi_{7581}(1880,\cdot)\) \(\chi_{7581}(2279,\cdot)\) \(\chi_{7581}(2564,\cdot)\) \(\chi_{7581}(2678,\cdot)\) \(\chi_{7581}(2963,\cdot)\) \(\chi_{7581}(3077,\cdot)\) \(\chi_{7581}(3362,\cdot)\) \(\chi_{7581}(3476,\cdot)\) \(\chi_{7581}(3761,\cdot)\) \(\chi_{7581}(3875,\cdot)\) \(\chi_{7581}(4160,\cdot)\) \(\chi_{7581}(4274,\cdot)\) \(\chi_{7581}(4559,\cdot)\) \(\chi_{7581}(4673,\cdot)\) \(\chi_{7581}(4958,\cdot)\) \(\chi_{7581}(5072,\cdot)\) \(\chi_{7581}(5357,\cdot)\) \(\chi_{7581}(5471,\cdot)\) \(\chi_{7581}(5756,\cdot)\) \(\chi_{7581}(5870,\cdot)\) \(\chi_{7581}(6155,\cdot)\) \(\chi_{7581}(6269,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{57})$
Fixed field: Number field defined by a degree 114 polynomial (not computed)

Values on generators

\((2528,6499,1807)\) → \((-1,e\left(\frac{2}{3}\right),e\left(\frac{1}{38}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(20\)
\( \chi_{ 7581 }(2678, a) \) \(1\)\(1\)\(e\left(\frac{49}{57}\right)\)\(e\left(\frac{41}{57}\right)\)\(e\left(\frac{107}{114}\right)\)\(e\left(\frac{11}{19}\right)\)\(e\left(\frac{91}{114}\right)\)\(e\left(\frac{97}{114}\right)\)\(e\left(\frac{25}{38}\right)\)\(e\left(\frac{25}{57}\right)\)\(e\left(\frac{13}{114}\right)\)\(e\left(\frac{25}{38}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 7581 }(2678,a) \;\) at \(\;a = \) e.g. 2