sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7581, base_ring=CyclotomicField(114))
M = H._module
chi = DirichletCharacter(H, M([57,76,3]))
pari:[g,chi] = znchar(Mod(2678,7581))
| Modulus: | \(7581\) | |
| Conductor: | \(7581\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(114\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{7581}(170,\cdot)\)
\(\chi_{7581}(284,\cdot)\)
\(\chi_{7581}(569,\cdot)\)
\(\chi_{7581}(683,\cdot)\)
\(\chi_{7581}(968,\cdot)\)
\(\chi_{7581}(1367,\cdot)\)
\(\chi_{7581}(1481,\cdot)\)
\(\chi_{7581}(1766,\cdot)\)
\(\chi_{7581}(1880,\cdot)\)
\(\chi_{7581}(2279,\cdot)\)
\(\chi_{7581}(2564,\cdot)\)
\(\chi_{7581}(2678,\cdot)\)
\(\chi_{7581}(2963,\cdot)\)
\(\chi_{7581}(3077,\cdot)\)
\(\chi_{7581}(3362,\cdot)\)
\(\chi_{7581}(3476,\cdot)\)
\(\chi_{7581}(3761,\cdot)\)
\(\chi_{7581}(3875,\cdot)\)
\(\chi_{7581}(4160,\cdot)\)
\(\chi_{7581}(4274,\cdot)\)
\(\chi_{7581}(4559,\cdot)\)
\(\chi_{7581}(4673,\cdot)\)
\(\chi_{7581}(4958,\cdot)\)
\(\chi_{7581}(5072,\cdot)\)
\(\chi_{7581}(5357,\cdot)\)
\(\chi_{7581}(5471,\cdot)\)
\(\chi_{7581}(5756,\cdot)\)
\(\chi_{7581}(5870,\cdot)\)
\(\chi_{7581}(6155,\cdot)\)
\(\chi_{7581}(6269,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2528,6499,1807)\) → \((-1,e\left(\frac{2}{3}\right),e\left(\frac{1}{38}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(20\) |
| \( \chi_{ 7581 }(2678, a) \) |
\(1\) | \(1\) | \(e\left(\frac{49}{57}\right)\) | \(e\left(\frac{41}{57}\right)\) | \(e\left(\frac{107}{114}\right)\) | \(e\left(\frac{11}{19}\right)\) | \(e\left(\frac{91}{114}\right)\) | \(e\left(\frac{97}{114}\right)\) | \(e\left(\frac{25}{38}\right)\) | \(e\left(\frac{25}{57}\right)\) | \(e\left(\frac{13}{114}\right)\) | \(e\left(\frac{25}{38}\right)\) |
sage:chi.jacobi_sum(n)