sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(755, base_ring=CyclotomicField(10))
M = H._module
chi = DirichletCharacter(H, M([0,4]))
pari:[g,chi] = znchar(Mod(461,755))
\(\chi_{755}(321,\cdot)\)
\(\chi_{755}(361,\cdot)\)
\(\chi_{755}(366,\cdot)\)
\(\chi_{755}(461,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((152,6)\) → \((1,e\left(\frac{2}{5}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) |
\( \chi_{ 755 }(461, a) \) |
\(1\) | \(1\) | \(1\) | \(e\left(\frac{2}{5}\right)\) | \(1\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(1\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)