sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7500, base_ring=CyclotomicField(10))
M = H._module
chi = DirichletCharacter(H, M([5,5,1]))
pari:[g,chi] = znchar(Mod(4499,7500))
\(\chi_{7500}(1499,\cdot)\)
\(\chi_{7500}(2999,\cdot)\)
\(\chi_{7500}(4499,\cdot)\)
\(\chi_{7500}(5999,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3751,2501,6877)\) → \((-1,-1,e\left(\frac{1}{10}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 7500 }(4499, a) \) |
\(1\) | \(1\) | \(1\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{9}{10}\right)\) |
sage:chi.jacobi_sum(n)