Properties

Label 7448.4927
Modulus $7448$
Conductor $3724$
Order $126$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7448, base_ring=CyclotomicField(126)) M = H._module chi = DirichletCharacter(H, M([63,0,9,98]))
 
Copy content pari:[g,chi] = znchar(Mod(4927,7448))
 

Basic properties

Modulus: \(7448\)
Conductor: \(3724\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(126\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{3724}(1203,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 7448.iu

\(\chi_{7448}(55,\cdot)\) \(\chi_{7448}(111,\cdot)\) \(\chi_{7448}(503,\cdot)\) \(\chi_{7448}(671,\cdot)\) \(\chi_{7448}(727,\cdot)\) \(\chi_{7448}(1119,\cdot)\) \(\chi_{7448}(1735,\cdot)\) \(\chi_{7448}(1791,\cdot)\) \(\chi_{7448}(1847,\cdot)\) \(\chi_{7448}(2183,\cdot)\) \(\chi_{7448}(2239,\cdot)\) \(\chi_{7448}(2631,\cdot)\) \(\chi_{7448}(2799,\cdot)\) \(\chi_{7448}(2855,\cdot)\) \(\chi_{7448}(2911,\cdot)\) \(\chi_{7448}(3247,\cdot)\) \(\chi_{7448}(3303,\cdot)\) \(\chi_{7448}(3695,\cdot)\) \(\chi_{7448}(3863,\cdot)\) \(\chi_{7448}(3975,\cdot)\) \(\chi_{7448}(4367,\cdot)\) \(\chi_{7448}(4759,\cdot)\) \(\chi_{7448}(4927,\cdot)\) \(\chi_{7448}(4983,\cdot)\) \(\chi_{7448}(5039,\cdot)\) \(\chi_{7448}(5375,\cdot)\) \(\chi_{7448}(5431,\cdot)\) \(\chi_{7448}(5823,\cdot)\) \(\chi_{7448}(5991,\cdot)\) \(\chi_{7448}(6047,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

\((1863,3725,3041,3137)\) → \((-1,1,e\left(\frac{1}{14}\right),e\left(\frac{7}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(23\)\(25\)\(27\)
\( \chi_{ 7448 }(4927, a) \) \(1\)\(1\)\(e\left(\frac{43}{63}\right)\)\(e\left(\frac{65}{126}\right)\)\(e\left(\frac{23}{63}\right)\)\(e\left(\frac{29}{42}\right)\)\(e\left(\frac{31}{126}\right)\)\(e\left(\frac{25}{126}\right)\)\(e\left(\frac{71}{126}\right)\)\(e\left(\frac{97}{126}\right)\)\(e\left(\frac{2}{63}\right)\)\(e\left(\frac{1}{21}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 7448 }(4927,a) \;\) at \(\;a = \) e.g. 2