Properties

Label 7448.3557
Modulus $7448$
Conductor $7448$
Order $126$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7448, base_ring=CyclotomicField(126)) M = H._module chi = DirichletCharacter(H, M([0,63,54,14]))
 
Copy content pari:[g,chi] = znchar(Mod(3557,7448))
 

Basic properties

Modulus: \(7448\)
Conductor: \(7448\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(126\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 7448.in

\(\chi_{7448}(85,\cdot)\) \(\chi_{7448}(253,\cdot)\) \(\chi_{7448}(309,\cdot)\) \(\chi_{7448}(365,\cdot)\) \(\chi_{7448}(701,\cdot)\) \(\chi_{7448}(757,\cdot)\) \(\chi_{7448}(1149,\cdot)\) \(\chi_{7448}(1317,\cdot)\) \(\chi_{7448}(1429,\cdot)\) \(\chi_{7448}(1821,\cdot)\) \(\chi_{7448}(2213,\cdot)\) \(\chi_{7448}(2381,\cdot)\) \(\chi_{7448}(2437,\cdot)\) \(\chi_{7448}(2493,\cdot)\) \(\chi_{7448}(2829,\cdot)\) \(\chi_{7448}(2885,\cdot)\) \(\chi_{7448}(3277,\cdot)\) \(\chi_{7448}(3445,\cdot)\) \(\chi_{7448}(3501,\cdot)\) \(\chi_{7448}(3557,\cdot)\) \(\chi_{7448}(3893,\cdot)\) \(\chi_{7448}(3949,\cdot)\) \(\chi_{7448}(4341,\cdot)\) \(\chi_{7448}(4565,\cdot)\) \(\chi_{7448}(4621,\cdot)\) \(\chi_{7448}(4957,\cdot)\) \(\chi_{7448}(5013,\cdot)\) \(\chi_{7448}(5405,\cdot)\) \(\chi_{7448}(5573,\cdot)\) \(\chi_{7448}(5629,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

\((1863,3725,3041,3137)\) → \((1,-1,e\left(\frac{3}{7}\right),e\left(\frac{1}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(23\)\(25\)\(27\)
\( \chi_{ 7448 }(3557, a) \) \(1\)\(1\)\(e\left(\frac{47}{126}\right)\)\(e\left(\frac{89}{126}\right)\)\(e\left(\frac{47}{63}\right)\)\(e\left(\frac{41}{42}\right)\)\(e\left(\frac{25}{126}\right)\)\(e\left(\frac{5}{63}\right)\)\(e\left(\frac{52}{63}\right)\)\(e\left(\frac{32}{63}\right)\)\(e\left(\frac{26}{63}\right)\)\(e\left(\frac{5}{42}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 7448 }(3557,a) \;\) at \(\;a = \) e.g. 2