sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7448, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([0,63,54,14]))
pari:[g,chi] = znchar(Mod(3557,7448))
Modulus: | \(7448\) | |
Conductor: | \(7448\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(126\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{7448}(85,\cdot)\)
\(\chi_{7448}(253,\cdot)\)
\(\chi_{7448}(309,\cdot)\)
\(\chi_{7448}(365,\cdot)\)
\(\chi_{7448}(701,\cdot)\)
\(\chi_{7448}(757,\cdot)\)
\(\chi_{7448}(1149,\cdot)\)
\(\chi_{7448}(1317,\cdot)\)
\(\chi_{7448}(1429,\cdot)\)
\(\chi_{7448}(1821,\cdot)\)
\(\chi_{7448}(2213,\cdot)\)
\(\chi_{7448}(2381,\cdot)\)
\(\chi_{7448}(2437,\cdot)\)
\(\chi_{7448}(2493,\cdot)\)
\(\chi_{7448}(2829,\cdot)\)
\(\chi_{7448}(2885,\cdot)\)
\(\chi_{7448}(3277,\cdot)\)
\(\chi_{7448}(3445,\cdot)\)
\(\chi_{7448}(3501,\cdot)\)
\(\chi_{7448}(3557,\cdot)\)
\(\chi_{7448}(3893,\cdot)\)
\(\chi_{7448}(3949,\cdot)\)
\(\chi_{7448}(4341,\cdot)\)
\(\chi_{7448}(4565,\cdot)\)
\(\chi_{7448}(4621,\cdot)\)
\(\chi_{7448}(4957,\cdot)\)
\(\chi_{7448}(5013,\cdot)\)
\(\chi_{7448}(5405,\cdot)\)
\(\chi_{7448}(5573,\cdot)\)
\(\chi_{7448}(5629,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1863,3725,3041,3137)\) → \((1,-1,e\left(\frac{3}{7}\right),e\left(\frac{1}{9}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(23\) | \(25\) | \(27\) |
\( \chi_{ 7448 }(3557, a) \) |
\(1\) | \(1\) | \(e\left(\frac{47}{126}\right)\) | \(e\left(\frac{89}{126}\right)\) | \(e\left(\frac{47}{63}\right)\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{25}{126}\right)\) | \(e\left(\frac{5}{63}\right)\) | \(e\left(\frac{52}{63}\right)\) | \(e\left(\frac{32}{63}\right)\) | \(e\left(\frac{26}{63}\right)\) | \(e\left(\frac{5}{42}\right)\) |
sage:chi.jacobi_sum(n)