sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7448, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([0,0,5,7]))
pari:[g,chi] = znchar(Mod(2393,7448))
\(\chi_{7448}(265,\cdot)\)
\(\chi_{7448}(1329,\cdot)\)
\(\chi_{7448}(2393,\cdot)\)
\(\chi_{7448}(3457,\cdot)\)
\(\chi_{7448}(4521,\cdot)\)
\(\chi_{7448}(6649,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1863,3725,3041,3137)\) → \((1,1,e\left(\frac{5}{14}\right),-1)\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(23\) | \(25\) | \(27\) |
\( \chi_{ 7448 }(2393, a) \) |
\(1\) | \(1\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) |
sage:chi.jacobi_sum(n)