Properties

Label 736.501
Modulus $736$
Conductor $736$
Order $88$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(736, base_ring=CyclotomicField(88)) M = H._module chi = DirichletCharacter(H, M([0,55,48]))
 
Copy content pari:[g,chi] = znchar(Mod(501,736))
 

Basic properties

Modulus: \(736\)
Conductor: \(736\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(88\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 736.bf

\(\chi_{736}(13,\cdot)\) \(\chi_{736}(29,\cdot)\) \(\chi_{736}(77,\cdot)\) \(\chi_{736}(85,\cdot)\) \(\chi_{736}(101,\cdot)\) \(\chi_{736}(117,\cdot)\) \(\chi_{736}(133,\cdot)\) \(\chi_{736}(141,\cdot)\) \(\chi_{736}(165,\cdot)\) \(\chi_{736}(173,\cdot)\) \(\chi_{736}(197,\cdot)\) \(\chi_{736}(213,\cdot)\) \(\chi_{736}(261,\cdot)\) \(\chi_{736}(269,\cdot)\) \(\chi_{736}(285,\cdot)\) \(\chi_{736}(301,\cdot)\) \(\chi_{736}(317,\cdot)\) \(\chi_{736}(325,\cdot)\) \(\chi_{736}(349,\cdot)\) \(\chi_{736}(357,\cdot)\) \(\chi_{736}(381,\cdot)\) \(\chi_{736}(397,\cdot)\) \(\chi_{736}(445,\cdot)\) \(\chi_{736}(453,\cdot)\) \(\chi_{736}(469,\cdot)\) \(\chi_{736}(485,\cdot)\) \(\chi_{736}(501,\cdot)\) \(\chi_{736}(509,\cdot)\) \(\chi_{736}(533,\cdot)\) \(\chi_{736}(541,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{88})$
Fixed field: Number field defined by a degree 88 polynomial

Values on generators

\((415,645,97)\) → \((1,e\left(\frac{5}{8}\right),e\left(\frac{6}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 736 }(501, a) \) \(1\)\(1\)\(e\left(\frac{53}{88}\right)\)\(e\left(\frac{15}{88}\right)\)\(e\left(\frac{27}{44}\right)\)\(e\left(\frac{9}{44}\right)\)\(e\left(\frac{3}{88}\right)\)\(e\left(\frac{1}{88}\right)\)\(e\left(\frac{17}{22}\right)\)\(e\left(\frac{7}{22}\right)\)\(e\left(\frac{49}{88}\right)\)\(e\left(\frac{19}{88}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 736 }(501,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 736 }(501,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 736 }(501,·),\chi_{ 736 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 736 }(501,·)) \;\) at \(\; a,b = \) e.g. 1,2