Properties

Label 736.309
Modulus $736$
Conductor $736$
Order $88$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(736, base_ring=CyclotomicField(88)) M = H._module chi = DirichletCharacter(H, M([0,55,12]))
 
Copy content pari:[g,chi] = znchar(Mod(309,736))
 

Basic properties

Modulus: \(736\)
Conductor: \(736\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(88\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 736.bc

\(\chi_{736}(5,\cdot)\) \(\chi_{736}(21,\cdot)\) \(\chi_{736}(37,\cdot)\) \(\chi_{736}(53,\cdot)\) \(\chi_{736}(61,\cdot)\) \(\chi_{736}(109,\cdot)\) \(\chi_{736}(125,\cdot)\) \(\chi_{736}(149,\cdot)\) \(\chi_{736}(157,\cdot)\) \(\chi_{736}(181,\cdot)\) \(\chi_{736}(189,\cdot)\) \(\chi_{736}(205,\cdot)\) \(\chi_{736}(221,\cdot)\) \(\chi_{736}(237,\cdot)\) \(\chi_{736}(245,\cdot)\) \(\chi_{736}(293,\cdot)\) \(\chi_{736}(309,\cdot)\) \(\chi_{736}(333,\cdot)\) \(\chi_{736}(341,\cdot)\) \(\chi_{736}(365,\cdot)\) \(\chi_{736}(373,\cdot)\) \(\chi_{736}(389,\cdot)\) \(\chi_{736}(405,\cdot)\) \(\chi_{736}(421,\cdot)\) \(\chi_{736}(429,\cdot)\) \(\chi_{736}(477,\cdot)\) \(\chi_{736}(493,\cdot)\) \(\chi_{736}(517,\cdot)\) \(\chi_{736}(525,\cdot)\) \(\chi_{736}(549,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{88})$
Fixed field: Number field defined by a degree 88 polynomial

Values on generators

\((415,645,97)\) → \((1,e\left(\frac{5}{8}\right),e\left(\frac{3}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 736 }(309, a) \) \(-1\)\(1\)\(e\left(\frac{5}{88}\right)\)\(e\left(\frac{67}{88}\right)\)\(e\left(\frac{37}{44}\right)\)\(e\left(\frac{5}{44}\right)\)\(e\left(\frac{31}{88}\right)\)\(e\left(\frac{25}{88}\right)\)\(e\left(\frac{9}{11}\right)\)\(e\left(\frac{5}{11}\right)\)\(e\left(\frac{37}{88}\right)\)\(e\left(\frac{79}{88}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 736 }(309,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 736 }(309,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 736 }(309,·),\chi_{ 736 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 736 }(309,·)) \;\) at \(\; a,b = \) e.g. 1,2