Properties

Label 7350.cv
Modulus $7350$
Conductor $1225$
Order $70$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7350, base_ring=CyclotomicField(70)) M = H._module chi = DirichletCharacter(H, M([0,63,40])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(169,7350)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(7350\)
Conductor: \(1225\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(70\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 1225.bj
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{35})$
Fixed field: Number field defined by a degree 70 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(11\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{7350}(169,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{13}{14}\right)\)
\(\chi_{7350}(379,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{3}{14}\right)\)
\(\chi_{7350}(1009,\cdot)\) \(1\) \(1\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{1}{14}\right)\)
\(\chi_{7350}(1219,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{5}{14}\right)\)
\(\chi_{7350}(1429,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{9}{14}\right)\)
\(\chi_{7350}(1639,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{13}{14}\right)\)
\(\chi_{7350}(2269,\cdot)\) \(1\) \(1\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{11}{14}\right)\)
\(\chi_{7350}(2479,\cdot)\) \(1\) \(1\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{1}{14}\right)\)
\(\chi_{7350}(2689,\cdot)\) \(1\) \(1\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{5}{14}\right)\)
\(\chi_{7350}(3109,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{41}{70}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{13}{14}\right)\)
\(\chi_{7350}(3319,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{3}{14}\right)\)
\(\chi_{7350}(3739,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{11}{14}\right)\)
\(\chi_{7350}(4159,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{5}{14}\right)\)
\(\chi_{7350}(4369,\cdot)\) \(1\) \(1\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{9}{14}\right)\)
\(\chi_{7350}(4579,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{41}{70}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{13}{14}\right)\)
\(\chi_{7350}(4789,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{3}{14}\right)\)
\(\chi_{7350}(5209,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{11}{14}\right)\)
\(\chi_{7350}(5419,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{1}{14}\right)\)
\(\chi_{7350}(5629,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{5}{14}\right)\)
\(\chi_{7350}(5839,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{9}{14}\right)\)
\(\chi_{7350}(6259,\cdot)\) \(1\) \(1\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{3}{14}\right)\)
\(\chi_{7350}(6679,\cdot)\) \(1\) \(1\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{11}{14}\right)\)
\(\chi_{7350}(6889,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{41}{70}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{1}{14}\right)\)
\(\chi_{7350}(7309,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{41}{70}\right)\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{9}{14}\right)\)