Properties

Label 7350.6829
Modulus $7350$
Conductor $175$
Order $30$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7350, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([0,3,20]))
 
Copy content pari:[g,chi] = znchar(Mod(6829,7350))
 

Basic properties

Modulus: \(7350\)
Conductor: \(175\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(30\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{175}(4,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 7350.ce

\(\chi_{7350}(79,\cdot)\) \(\chi_{7350}(2419,\cdot)\) \(\chi_{7350}(3019,\cdot)\) \(\chi_{7350}(3889,\cdot)\) \(\chi_{7350}(4489,\cdot)\) \(\chi_{7350}(5359,\cdot)\) \(\chi_{7350}(5959,\cdot)\) \(\chi_{7350}(6829,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: 30.30.35434884492252294752034913472016341984272003173828125.1

Values on generators

\((4901,1177,2551)\) → \((1,e\left(\frac{1}{10}\right),e\left(\frac{2}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 7350 }(6829, a) \) \(1\)\(1\)\(e\left(\frac{4}{15}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{29}{30}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{13}{30}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{7}{30}\right)\)\(e\left(\frac{2}{5}\right)\)\(-1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 7350 }(6829,a) \;\) at \(\;a = \) e.g. 2