![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(735, base_ring=CyclotomicField(28))
M = H._module
chi = DirichletCharacter(H, M([14,21,12]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(735, base_ring=CyclotomicField(28))
M = H._module
chi = DirichletCharacter(H, M([14,21,12]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(323,735))
        pari:[g,chi] = znchar(Mod(323,735))
         
     
    
  
   | Modulus: | \(735\) |  | 
   | Conductor: | \(735\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(28\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | even | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{735}(8,\cdot)\)
  \(\chi_{735}(92,\cdot)\)
  \(\chi_{735}(113,\cdot)\)
  \(\chi_{735}(218,\cdot)\)
  \(\chi_{735}(302,\cdot)\)
  \(\chi_{735}(323,\cdot)\)
  \(\chi_{735}(407,\cdot)\)
  \(\chi_{735}(428,\cdot)\)
  \(\chi_{735}(512,\cdot)\)
  \(\chi_{735}(533,\cdot)\)
  \(\chi_{735}(617,\cdot)\)
  \(\chi_{735}(722,\cdot)\)
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((491,442,346)\) → \((-1,-i,e\left(\frac{3}{7}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) | 
    
    
      | \( \chi_{ 735 }(323, a) \) | \(1\) | \(1\) | \(e\left(\frac{11}{28}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{5}{28}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{11}{28}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{27}{28}\right)\) | \(-1\) | \(e\left(\frac{1}{28}\right)\) | \(e\left(\frac{1}{28}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.gauss_sum(a)
        sage:chi.gauss_sum(a)
         
     
    
    
        ![Copy content]() pari:znchargauss(g,chi,a)
        pari:znchargauss(g,chi,a)
         
     
    
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.kloosterman_sum(a,b)
        sage:chi.kloosterman_sum(a,b)