sage: H = DirichletGroup(731025)
pari: g = idealstar(,731025,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 369360 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{18}\times C_{10260}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{731025}(279776,\cdot)$, $\chi_{731025}(321652,\cdot)$, $\chi_{731025}(129601,\cdot)$ |
First 32 of 369360 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(22\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{731025}(1,\cdot)\) | 731025.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{731025}(2,\cdot)\) | 731025.bvw | 10260 | yes | \(-1\) | \(1\) | \(e\left(\frac{733}{10260}\right)\) | \(e\left(\frac{733}{5130}\right)\) | \(e\left(\frac{2021}{2052}\right)\) | \(e\left(\frac{733}{3420}\right)\) | \(e\left(\frac{1739}{5130}\right)\) | \(e\left(\frac{617}{10260}\right)\) | \(e\left(\frac{289}{5130}\right)\) | \(e\left(\frac{733}{2565}\right)\) | \(e\left(\frac{1051}{1140}\right)\) | \(e\left(\frac{4211}{10260}\right)\) |
\(\chi_{731025}(4,\cdot)\) | 731025.bug | 5130 | yes | \(1\) | \(1\) | \(e\left(\frac{733}{5130}\right)\) | \(e\left(\frac{733}{2565}\right)\) | \(e\left(\frac{995}{1026}\right)\) | \(e\left(\frac{733}{1710}\right)\) | \(e\left(\frac{1739}{2565}\right)\) | \(e\left(\frac{617}{5130}\right)\) | \(e\left(\frac{289}{2565}\right)\) | \(e\left(\frac{1466}{2565}\right)\) | \(e\left(\frac{481}{570}\right)\) | \(e\left(\frac{4211}{5130}\right)\) |
\(\chi_{731025}(7,\cdot)\) | 731025.bpn | 2052 | no | \(-1\) | \(1\) | \(e\left(\frac{2021}{2052}\right)\) | \(e\left(\frac{995}{1026}\right)\) | \(e\left(\frac{1601}{2052}\right)\) | \(e\left(\frac{653}{684}\right)\) | \(e\left(\frac{302}{513}\right)\) | \(e\left(\frac{859}{2052}\right)\) | \(e\left(\frac{785}{1026}\right)\) | \(e\left(\frac{482}{513}\right)\) | \(e\left(\frac{103}{684}\right)\) | \(e\left(\frac{1177}{2052}\right)\) |
\(\chi_{731025}(8,\cdot)\) | 731025.bri | 3420 | no | \(-1\) | \(1\) | \(e\left(\frac{733}{3420}\right)\) | \(e\left(\frac{733}{1710}\right)\) | \(e\left(\frac{653}{684}\right)\) | \(e\left(\frac{733}{1140}\right)\) | \(e\left(\frac{29}{1710}\right)\) | \(e\left(\frac{617}{3420}\right)\) | \(e\left(\frac{289}{1710}\right)\) | \(e\left(\frac{733}{855}\right)\) | \(e\left(\frac{291}{380}\right)\) | \(e\left(\frac{791}{3420}\right)\) |
\(\chi_{731025}(11,\cdot)\) | 731025.btk | 5130 | yes | \(-1\) | \(1\) | \(e\left(\frac{1739}{5130}\right)\) | \(e\left(\frac{1739}{2565}\right)\) | \(e\left(\frac{302}{513}\right)\) | \(e\left(\frac{29}{1710}\right)\) | \(e\left(\frac{1799}{5130}\right)\) | \(e\left(\frac{638}{2565}\right)\) | \(e\left(\frac{4759}{5130}\right)\) | \(e\left(\frac{913}{2565}\right)\) | \(e\left(\frac{1279}{1710}\right)\) | \(e\left(\frac{1769}{2565}\right)\) |
\(\chi_{731025}(13,\cdot)\) | 731025.buq | 10260 | yes | \(1\) | \(1\) | \(e\left(\frac{617}{10260}\right)\) | \(e\left(\frac{617}{5130}\right)\) | \(e\left(\frac{859}{2052}\right)\) | \(e\left(\frac{617}{3420}\right)\) | \(e\left(\frac{638}{2565}\right)\) | \(e\left(\frac{7483}{10260}\right)\) | \(e\left(\frac{1228}{2565}\right)\) | \(e\left(\frac{617}{2565}\right)\) | \(e\left(\frac{739}{1140}\right)\) | \(e\left(\frac{3169}{10260}\right)\) |
\(\chi_{731025}(14,\cdot)\) | 731025.bte | 5130 | yes | \(1\) | \(1\) | \(e\left(\frac{289}{5130}\right)\) | \(e\left(\frac{289}{2565}\right)\) | \(e\left(\frac{785}{1026}\right)\) | \(e\left(\frac{289}{1710}\right)\) | \(e\left(\frac{4759}{5130}\right)\) | \(e\left(\frac{1228}{2565}\right)\) | \(e\left(\frac{2107}{2565}\right)\) | \(e\left(\frac{578}{2565}\right)\) | \(e\left(\frac{62}{855}\right)\) | \(e\left(\frac{2524}{2565}\right)\) |
\(\chi_{731025}(16,\cdot)\) | 731025.bqa | 2565 | yes | \(1\) | \(1\) | \(e\left(\frac{733}{2565}\right)\) | \(e\left(\frac{1466}{2565}\right)\) | \(e\left(\frac{482}{513}\right)\) | \(e\left(\frac{733}{855}\right)\) | \(e\left(\frac{913}{2565}\right)\) | \(e\left(\frac{617}{2565}\right)\) | \(e\left(\frac{578}{2565}\right)\) | \(e\left(\frac{367}{2565}\right)\) | \(e\left(\frac{196}{285}\right)\) | \(e\left(\frac{1646}{2565}\right)\) |
\(\chi_{731025}(17,\cdot)\) | 731025.bsa | 3420 | no | \(1\) | \(1\) | \(e\left(\frac{1051}{1140}\right)\) | \(e\left(\frac{481}{570}\right)\) | \(e\left(\frac{103}{684}\right)\) | \(e\left(\frac{291}{380}\right)\) | \(e\left(\frac{1279}{1710}\right)\) | \(e\left(\frac{739}{1140}\right)\) | \(e\left(\frac{62}{855}\right)\) | \(e\left(\frac{196}{285}\right)\) | \(e\left(\frac{3289}{3420}\right)\) | \(e\left(\frac{2291}{3420}\right)\) |
\(\chi_{731025}(22,\cdot)\) | 731025.bvj | 10260 | yes | \(1\) | \(1\) | \(e\left(\frac{4211}{10260}\right)\) | \(e\left(\frac{4211}{5130}\right)\) | \(e\left(\frac{1177}{2052}\right)\) | \(e\left(\frac{791}{3420}\right)\) | \(e\left(\frac{1769}{2565}\right)\) | \(e\left(\frac{3169}{10260}\right)\) | \(e\left(\frac{2524}{2565}\right)\) | \(e\left(\frac{1646}{2565}\right)\) | \(e\left(\frac{2291}{3420}\right)\) | \(e\left(\frac{1027}{10260}\right)\) |
\(\chi_{731025}(23,\cdot)\) | 731025.bvx | 10260 | yes | \(1\) | \(1\) | \(e\left(\frac{1853}{10260}\right)\) | \(e\left(\frac{1853}{5130}\right)\) | \(e\left(\frac{91}{2052}\right)\) | \(e\left(\frac{1853}{3420}\right)\) | \(e\left(\frac{5089}{5130}\right)\) | \(e\left(\frac{5437}{10260}\right)\) | \(e\left(\frac{577}{2565}\right)\) | \(e\left(\frac{1853}{2565}\right)\) | \(e\left(\frac{401}{1140}\right)\) | \(e\left(\frac{1771}{10260}\right)\) |
\(\chi_{731025}(26,\cdot)\) | 731025.tr | 114 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{38}\right)\) | \(e\left(\frac{5}{19}\right)\) | \(e\left(\frac{23}{57}\right)\) | \(e\left(\frac{15}{38}\right)\) | \(e\left(\frac{67}{114}\right)\) | \(e\left(\frac{15}{19}\right)\) | \(e\left(\frac{61}{114}\right)\) | \(e\left(\frac{10}{19}\right)\) | \(e\left(\frac{65}{114}\right)\) | \(e\left(\frac{41}{57}\right)\) |
\(\chi_{731025}(28,\cdot)\) | 731025.wc | 180 | no | \(-1\) | \(1\) | \(e\left(\frac{23}{180}\right)\) | \(e\left(\frac{23}{90}\right)\) | \(-i\) | \(e\left(\frac{23}{60}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{97}{180}\right)\) | \(e\left(\frac{79}{90}\right)\) | \(e\left(\frac{23}{45}\right)\) | \(e\left(\frac{179}{180}\right)\) | \(e\left(\frac{71}{180}\right)\) |
\(\chi_{731025}(29,\cdot)\) | 731025.bsw | 5130 | yes | \(1\) | \(1\) | \(e\left(\frac{4283}{5130}\right)\) | \(e\left(\frac{1718}{2565}\right)\) | \(e\left(\frac{943}{1026}\right)\) | \(e\left(\frac{863}{1710}\right)\) | \(e\left(\frac{2963}{5130}\right)\) | \(e\left(\frac{1886}{2565}\right)\) | \(e\left(\frac{1934}{2565}\right)\) | \(e\left(\frac{871}{2565}\right)\) | \(e\left(\frac{124}{855}\right)\) | \(e\left(\frac{1058}{2565}\right)\) |
\(\chi_{731025}(31,\cdot)\) | 731025.buc | 5130 | yes | \(-1\) | \(1\) | \(e\left(\frac{3367}{5130}\right)\) | \(e\left(\frac{802}{2565}\right)\) | \(e\left(\frac{421}{513}\right)\) | \(e\left(\frac{1657}{1710}\right)\) | \(e\left(\frac{1496}{2565}\right)\) | \(e\left(\frac{233}{5130}\right)\) | \(e\left(\frac{2447}{5130}\right)\) | \(e\left(\frac{1604}{2565}\right)\) | \(e\left(\frac{556}{855}\right)\) | \(e\left(\frac{1229}{5130}\right)\) |
\(\chi_{731025}(32,\cdot)\) | 731025.bpx | 2052 | no | \(-1\) | \(1\) | \(e\left(\frac{733}{2052}\right)\) | \(e\left(\frac{733}{1026}\right)\) | \(e\left(\frac{1897}{2052}\right)\) | \(e\left(\frac{49}{684}\right)\) | \(e\left(\frac{713}{1026}\right)\) | \(e\left(\frac{617}{2052}\right)\) | \(e\left(\frac{289}{1026}\right)\) | \(e\left(\frac{220}{513}\right)\) | \(e\left(\frac{139}{228}\right)\) | \(e\left(\frac{107}{2052}\right)\) |
\(\chi_{731025}(34,\cdot)\) | 731025.bua | 5130 | yes | \(-1\) | \(1\) | \(e\left(\frac{2548}{2565}\right)\) | \(e\left(\frac{2531}{2565}\right)\) | \(e\left(\frac{139}{1026}\right)\) | \(e\left(\frac{838}{855}\right)\) | \(e\left(\frac{223}{2565}\right)\) | \(e\left(\frac{1817}{2565}\right)\) | \(e\left(\frac{661}{5130}\right)\) | \(e\left(\frac{2497}{2565}\right)\) | \(e\left(\frac{1511}{1710}\right)\) | \(e\left(\frac{206}{2565}\right)\) |
\(\chi_{731025}(37,\cdot)\) | 731025.bre | 3420 | no | \(1\) | \(1\) | \(e\left(\frac{1229}{3420}\right)\) | \(e\left(\frac{1229}{1710}\right)\) | \(e\left(\frac{295}{684}\right)\) | \(e\left(\frac{89}{1140}\right)\) | \(e\left(\frac{626}{855}\right)\) | \(e\left(\frac{211}{3420}\right)\) | \(e\left(\frac{676}{855}\right)\) | \(e\left(\frac{374}{855}\right)\) | \(e\left(\frac{289}{1140}\right)\) | \(e\left(\frac{313}{3420}\right)\) |
\(\chi_{731025}(41,\cdot)\) | 731025.bsz | 5130 | yes | \(1\) | \(1\) | \(e\left(\frac{968}{2565}\right)\) | \(e\left(\frac{1936}{2565}\right)\) | \(e\left(\frac{46}{513}\right)\) | \(e\left(\frac{113}{855}\right)\) | \(e\left(\frac{4831}{5130}\right)\) | \(e\left(\frac{539}{5130}\right)\) | \(e\left(\frac{1198}{2565}\right)\) | \(e\left(\frac{1307}{2565}\right)\) | \(e\left(\frac{451}{1710}\right)\) | \(e\left(\frac{1637}{5130}\right)\) |
\(\chi_{731025}(43,\cdot)\) | 731025.boq | 2052 | no | \(-1\) | \(1\) | \(e\left(\frac{635}{2052}\right)\) | \(e\left(\frac{635}{1026}\right)\) | \(e\left(\frac{155}{2052}\right)\) | \(e\left(\frac{635}{684}\right)\) | \(e\left(\frac{413}{513}\right)\) | \(e\left(\frac{1093}{2052}\right)\) | \(e\left(\frac{395}{1026}\right)\) | \(e\left(\frac{122}{513}\right)\) | \(e\left(\frac{127}{228}\right)\) | \(e\left(\frac{235}{2052}\right)\) |
\(\chi_{731025}(44,\cdot)\) | 731025.bms | 1710 | no | \(-1\) | \(1\) | \(e\left(\frac{412}{855}\right)\) | \(e\left(\frac{824}{855}\right)\) | \(e\left(\frac{191}{342}\right)\) | \(e\left(\frac{127}{285}\right)\) | \(e\left(\frac{49}{1710}\right)\) | \(e\left(\frac{631}{1710}\right)\) | \(e\left(\frac{23}{570}\right)\) | \(e\left(\frac{793}{855}\right)\) | \(e\left(\frac{506}{855}\right)\) | \(e\left(\frac{97}{190}\right)\) |
\(\chi_{731025}(46,\cdot)\) | 731025.bnn | 1710 | no | \(-1\) | \(1\) | \(e\left(\frac{431}{1710}\right)\) | \(e\left(\frac{431}{855}\right)\) | \(e\left(\frac{5}{171}\right)\) | \(e\left(\frac{431}{570}\right)\) | \(e\left(\frac{283}{855}\right)\) | \(e\left(\frac{1009}{1710}\right)\) | \(e\left(\frac{481}{1710}\right)\) | \(e\left(\frac{7}{855}\right)\) | \(e\left(\frac{26}{95}\right)\) | \(e\left(\frac{997}{1710}\right)\) |
\(\chi_{731025}(47,\cdot)\) | 731025.buz | 10260 | yes | \(1\) | \(1\) | \(e\left(\frac{571}{10260}\right)\) | \(e\left(\frac{571}{5130}\right)\) | \(e\left(\frac{1493}{2052}\right)\) | \(e\left(\frac{571}{3420}\right)\) | \(e\left(\frac{203}{5130}\right)\) | \(e\left(\frac{2039}{10260}\right)\) | \(e\left(\frac{2009}{2565}\right)\) | \(e\left(\frac{571}{2565}\right)\) | \(e\left(\frac{1741}{3420}\right)\) | \(e\left(\frac{977}{10260}\right)\) |
\(\chi_{731025}(49,\cdot)\) | 731025.bjt | 1026 | no | \(1\) | \(1\) | \(e\left(\frac{995}{1026}\right)\) | \(e\left(\frac{482}{513}\right)\) | \(e\left(\frac{575}{1026}\right)\) | \(e\left(\frac{311}{342}\right)\) | \(e\left(\frac{91}{513}\right)\) | \(e\left(\frac{859}{1026}\right)\) | \(e\left(\frac{272}{513}\right)\) | \(e\left(\frac{451}{513}\right)\) | \(e\left(\frac{103}{342}\right)\) | \(e\left(\frac{151}{1026}\right)\) |
\(\chi_{731025}(52,\cdot)\) | 731025.buu | 10260 | yes | \(1\) | \(1\) | \(e\left(\frac{2083}{10260}\right)\) | \(e\left(\frac{2083}{5130}\right)\) | \(e\left(\frac{797}{2052}\right)\) | \(e\left(\frac{2083}{3420}\right)\) | \(e\left(\frac{2377}{2565}\right)\) | \(e\left(\frac{8717}{10260}\right)\) | \(e\left(\frac{1517}{2565}\right)\) | \(e\left(\frac{2083}{2565}\right)\) | \(e\left(\frac{187}{380}\right)\) | \(e\left(\frac{1331}{10260}\right)\) |
\(\chi_{731025}(53,\cdot)\) | 731025.bru | 3420 | no | \(-1\) | \(1\) | \(e\left(\frac{1457}{3420}\right)\) | \(e\left(\frac{1457}{1710}\right)\) | \(e\left(\frac{37}{76}\right)\) | \(e\left(\frac{317}{1140}\right)\) | \(e\left(\frac{107}{570}\right)\) | \(e\left(\frac{553}{3420}\right)\) | \(e\left(\frac{1561}{1710}\right)\) | \(e\left(\frac{602}{855}\right)\) | \(e\left(\frac{3071}{3420}\right)\) | \(e\left(\frac{2099}{3420}\right)\) |
\(\chi_{731025}(56,\cdot)\) | 731025.bth | 5130 | yes | \(1\) | \(1\) | \(e\left(\frac{511}{2565}\right)\) | \(e\left(\frac{1022}{2565}\right)\) | \(e\left(\frac{377}{513}\right)\) | \(e\left(\frac{511}{855}\right)\) | \(e\left(\frac{3107}{5130}\right)\) | \(e\left(\frac{3073}{5130}\right)\) | \(e\left(\frac{2396}{2565}\right)\) | \(e\left(\frac{2044}{2565}\right)\) | \(e\left(\frac{1567}{1710}\right)\) | \(e\left(\frac{4129}{5130}\right)\) |
\(\chi_{731025}(58,\cdot)\) | 731025.bvn | 10260 | yes | \(-1\) | \(1\) | \(e\left(\frac{9299}{10260}\right)\) | \(e\left(\frac{4169}{5130}\right)\) | \(e\left(\frac{1855}{2052}\right)\) | \(e\left(\frac{2459}{3420}\right)\) | \(e\left(\frac{2351}{2565}\right)\) | \(e\left(\frac{8161}{10260}\right)\) | \(e\left(\frac{4157}{5130}\right)\) | \(e\left(\frac{1604}{2565}\right)\) | \(e\left(\frac{229}{3420}\right)\) | \(e\left(\frac{8443}{10260}\right)\) |
\(\chi_{731025}(59,\cdot)\) | 731025.bte | 5130 | yes | \(1\) | \(1\) | \(e\left(\frac{5071}{5130}\right)\) | \(e\left(\frac{2506}{2565}\right)\) | \(e\left(\frac{35}{1026}\right)\) | \(e\left(\frac{1651}{1710}\right)\) | \(e\left(\frac{271}{5130}\right)\) | \(e\left(\frac{1267}{2565}\right)\) | \(e\left(\frac{58}{2565}\right)\) | \(e\left(\frac{2447}{2565}\right)\) | \(e\left(\frac{653}{855}\right)\) | \(e\left(\frac{106}{2565}\right)\) |
\(\chi_{731025}(61,\cdot)\) | 731025.bqf | 2565 | yes | \(1\) | \(1\) | \(e\left(\frac{82}{2565}\right)\) | \(e\left(\frac{164}{2565}\right)\) | \(e\left(\frac{389}{513}\right)\) | \(e\left(\frac{82}{855}\right)\) | \(e\left(\frac{1942}{2565}\right)\) | \(e\left(\frac{1043}{2565}\right)\) | \(e\left(\frac{2027}{2565}\right)\) | \(e\left(\frac{328}{2565}\right)\) | \(e\left(\frac{832}{855}\right)\) | \(e\left(\frac{2024}{2565}\right)\) |
\(\chi_{731025}(62,\cdot)\) | 731025.vw | 180 | no | \(1\) | \(1\) | \(e\left(\frac{131}{180}\right)\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{11}{60}\right)\) | \(e\left(\frac{83}{90}\right)\) | \(e\left(\frac{19}{180}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{41}{45}\right)\) | \(e\left(\frac{103}{180}\right)\) | \(e\left(\frac{13}{20}\right)\) |