sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(73, base_ring=CyclotomicField(72))
M = H._module
chi = DirichletCharacter(H, M([13]))
pari:[g,chi] = znchar(Mod(45,73))
| Modulus: | \(73\) | |
| Conductor: | \(73\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(72\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{73}(5,\cdot)\)
\(\chi_{73}(11,\cdot)\)
\(\chi_{73}(13,\cdot)\)
\(\chi_{73}(14,\cdot)\)
\(\chi_{73}(15,\cdot)\)
\(\chi_{73}(20,\cdot)\)
\(\chi_{73}(26,\cdot)\)
\(\chi_{73}(28,\cdot)\)
\(\chi_{73}(29,\cdot)\)
\(\chi_{73}(31,\cdot)\)
\(\chi_{73}(33,\cdot)\)
\(\chi_{73}(34,\cdot)\)
\(\chi_{73}(39,\cdot)\)
\(\chi_{73}(40,\cdot)\)
\(\chi_{73}(42,\cdot)\)
\(\chi_{73}(44,\cdot)\)
\(\chi_{73}(45,\cdot)\)
\(\chi_{73}(47,\cdot)\)
\(\chi_{73}(53,\cdot)\)
\(\chi_{73}(58,\cdot)\)
\(\chi_{73}(59,\cdot)\)
\(\chi_{73}(60,\cdot)\)
\(\chi_{73}(62,\cdot)\)
\(\chi_{73}(68,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(5\) → \(e\left(\frac{13}{72}\right)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 73 }(45, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{13}{72}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{67}{72}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)