Properties

Label 7260.cx
Modulus $7260$
Conductor $363$
Order $110$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7260, base_ring=CyclotomicField(110)) M = H._module chi = DirichletCharacter(H, M([0,55,0,23])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(41,7260)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(7260\)
Conductor: \(363\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(110\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 363.p
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 110 polynomial (not computed)

First 31 of 40 characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{7260}(41,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{110}\right)\) \(e\left(\frac{13}{110}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{39}{110}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{5}{22}\right)\)
\(\chi_{7260}(101,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{110}\right)\) \(e\left(\frac{31}{110}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{93}{110}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{17}{22}\right)\)
\(\chi_{7260}(281,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{110}\right)\) \(e\left(\frac{59}{110}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{67}{110}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{21}{22}\right)\)
\(\chi_{7260}(701,\cdot)\) \(1\) \(1\) \(e\left(\frac{101}{110}\right)\) \(e\left(\frac{43}{110}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{19}{110}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{3}{22}\right)\)
\(\chi_{7260}(761,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{110}\right)\) \(e\left(\frac{41}{110}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{13}{110}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{9}{22}\right)\)
\(\chi_{7260}(821,\cdot)\) \(1\) \(1\) \(e\left(\frac{109}{110}\right)\) \(e\left(\frac{17}{110}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{51}{110}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{15}{22}\right)\)
\(\chi_{7260}(1361,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{110}\right)\) \(e\left(\frac{73}{110}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{109}{110}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{1}{22}\right)\)
\(\chi_{7260}(1421,\cdot)\) \(1\) \(1\) \(e\left(\frac{107}{110}\right)\) \(e\left(\frac{51}{110}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{43}{110}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{1}{22}\right)\)
\(\chi_{7260}(1481,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{110}\right)\) \(e\left(\frac{67}{110}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{91}{110}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{19}{22}\right)\)
\(\chi_{7260}(1601,\cdot)\) \(1\) \(1\) \(e\left(\frac{63}{110}\right)\) \(e\left(\frac{29}{110}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{87}{110}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{1}{22}\right)\)
\(\chi_{7260}(2021,\cdot)\) \(1\) \(1\) \(e\left(\frac{91}{110}\right)\) \(e\left(\frac{103}{110}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{89}{110}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{21}{22}\right)\)
\(\chi_{7260}(2081,\cdot)\) \(1\) \(1\) \(e\left(\frac{87}{110}\right)\) \(e\left(\frac{61}{110}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{73}{110}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{15}{22}\right)\)
\(\chi_{7260}(2141,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{110}\right)\) \(e\left(\frac{7}{110}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{21}{110}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{1}{22}\right)\)
\(\chi_{7260}(2261,\cdot)\) \(1\) \(1\) \(e\left(\frac{93}{110}\right)\) \(e\left(\frac{69}{110}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{97}{110}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{13}{22}\right)\)
\(\chi_{7260}(2681,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{110}\right)\) \(e\left(\frac{23}{110}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{69}{110}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{19}{22}\right)\)
\(\chi_{7260}(2741,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{110}\right)\) \(e\left(\frac{71}{110}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{103}{110}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{7}{22}\right)\)
\(\chi_{7260}(2801,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{110}\right)\) \(e\left(\frac{57}{110}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{61}{110}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{5}{22}\right)\)
\(\chi_{7260}(2921,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{110}\right)\) \(e\left(\frac{109}{110}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{107}{110}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{3}{22}\right)\)
\(\chi_{7260}(3341,\cdot)\) \(1\) \(1\) \(e\left(\frac{81}{110}\right)\) \(e\left(\frac{53}{110}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{49}{110}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{17}{22}\right)\)
\(\chi_{7260}(3401,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{110}\right)\) \(e\left(\frac{81}{110}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{23}{110}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{21}{22}\right)\)
\(\chi_{7260}(3461,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{110}\right)\) \(e\left(\frac{107}{110}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{101}{110}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{9}{22}\right)\)
\(\chi_{7260}(3581,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{110}\right)\) \(e\left(\frac{39}{110}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{7}{110}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{15}{22}\right)\)
\(\chi_{7260}(4001,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{110}\right)\) \(e\left(\frac{83}{110}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{29}{110}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{15}{22}\right)\)
\(\chi_{7260}(4061,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{110}\right)\) \(e\left(\frac{91}{110}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{53}{110}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{13}{22}\right)\)
\(\chi_{7260}(4121,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{110}\right)\) \(e\left(\frac{47}{110}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{31}{110}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{13}{22}\right)\)
\(\chi_{7260}(4241,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{110}\right)\) \(e\left(\frac{79}{110}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{17}{110}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{5}{22}\right)\)
\(\chi_{7260}(4661,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{110}\right)\) \(e\left(\frac{3}{110}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{9}{110}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{13}{22}\right)\)
\(\chi_{7260}(4721,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{110}\right)\) \(e\left(\frac{101}{110}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{83}{110}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{5}{22}\right)\)
\(\chi_{7260}(4781,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{110}\right)\) \(e\left(\frac{97}{110}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{71}{110}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{17}{22}\right)\)
\(\chi_{7260}(4901,\cdot)\) \(1\) \(1\) \(e\left(\frac{103}{110}\right)\) \(e\left(\frac{9}{110}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{27}{110}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{17}{22}\right)\)
\(\chi_{7260}(5381,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{110}\right)\) \(e\left(\frac{1}{110}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{3}{110}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{19}{22}\right)\)