sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7260, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([0,10,5,8]))
pari:[g,chi] = znchar(Mod(6077,7260))
\(\chi_{7260}(977,\cdot)\)
\(\chi_{7260}(1697,\cdot)\)
\(\chi_{7260}(3173,\cdot)\)
\(\chi_{7260}(3953,\cdot)\)
\(\chi_{7260}(5333,\cdot)\)
\(\chi_{7260}(6053,\cdot)\)
\(\chi_{7260}(6077,\cdot)\)
\(\chi_{7260}(6857,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3631,4841,4357,7141)\) → \((1,-1,i,e\left(\frac{2}{5}\right))\)
\(a\) |
\(-1\) | \(1\) | \(7\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 7260 }(6077, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(i\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(-i\) |
sage:chi.jacobi_sum(n)