Properties

Label 7260.53
Modulus $7260$
Conductor $1815$
Order $220$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7260, base_ring=CyclotomicField(220)) M = H._module chi = DirichletCharacter(H, M([0,110,165,212]))
 
Copy content pari:[g,chi] = znchar(Mod(53,7260))
 

Basic properties

Modulus: \(7260\)
Conductor: \(1815\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(220\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1815}(53,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 7260.dn

\(\chi_{7260}(53,\cdot)\) \(\chi_{7260}(113,\cdot)\) \(\chi_{7260}(137,\cdot)\) \(\chi_{7260}(257,\cdot)\) \(\chi_{7260}(317,\cdot)\) \(\chi_{7260}(377,\cdot)\) \(\chi_{7260}(533,\cdot)\) \(\chi_{7260}(653,\cdot)\) \(\chi_{7260}(713,\cdot)\) \(\chi_{7260}(773,\cdot)\) \(\chi_{7260}(797,\cdot)\) \(\chi_{7260}(917,\cdot)\) \(\chi_{7260}(1037,\cdot)\) \(\chi_{7260}(1193,\cdot)\) \(\chi_{7260}(1313,\cdot)\) \(\chi_{7260}(1373,\cdot)\) \(\chi_{7260}(1433,\cdot)\) \(\chi_{7260}(1457,\cdot)\) \(\chi_{7260}(1577,\cdot)\) \(\chi_{7260}(1637,\cdot)\) \(\chi_{7260}(1853,\cdot)\) \(\chi_{7260}(1973,\cdot)\) \(\chi_{7260}(2033,\cdot)\) \(\chi_{7260}(2093,\cdot)\) \(\chi_{7260}(2117,\cdot)\) \(\chi_{7260}(2237,\cdot)\) \(\chi_{7260}(2297,\cdot)\) \(\chi_{7260}(2357,\cdot)\) \(\chi_{7260}(2513,\cdot)\) \(\chi_{7260}(2633,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{220})$
Fixed field: Number field defined by a degree 220 polynomial (not computed)

Values on generators

\((3631,4841,4357,7141)\) → \((1,-1,-i,e\left(\frac{53}{55}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 7260 }(53, a) \) \(1\)\(1\)\(e\left(\frac{109}{220}\right)\)\(e\left(\frac{127}{220}\right)\)\(e\left(\frac{103}{220}\right)\)\(e\left(\frac{53}{110}\right)\)\(e\left(\frac{9}{44}\right)\)\(e\left(\frac{21}{55}\right)\)\(e\left(\frac{48}{55}\right)\)\(e\left(\frac{49}{220}\right)\)\(e\left(\frac{73}{110}\right)\)\(e\left(\frac{15}{44}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 7260 }(53,a) \;\) at \(\;a = \) e.g. 2