sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7260, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([0,0,5,18]))
pari:[g,chi] = znchar(Mod(457,7260))
\(\chi_{7260}(457,\cdot)\)
\(\chi_{7260}(1933,\cdot)\)
\(\chi_{7260}(2653,\cdot)\)
\(\chi_{7260}(4033,\cdot)\)
\(\chi_{7260}(4813,\cdot)\)
\(\chi_{7260}(4837,\cdot)\)
\(\chi_{7260}(5557,\cdot)\)
\(\chi_{7260}(6937,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3631,4841,4357,7141)\) → \((1,1,i,e\left(\frac{9}{10}\right))\)
\(a\) |
\(-1\) | \(1\) | \(7\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 7260 }(457, a) \) |
\(1\) | \(1\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(-i\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(i\) |
sage:chi.jacobi_sum(n)