sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7260, base_ring=CyclotomicField(22))
M = H._module
chi = DirichletCharacter(H, M([11,11,11,10]))
pari:[g,chi] = znchar(Mod(3059,7260))
Modulus: | \(7260\) | |
Conductor: | \(7260\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(22\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{7260}(419,\cdot)\)
\(\chi_{7260}(1079,\cdot)\)
\(\chi_{7260}(1739,\cdot)\)
\(\chi_{7260}(2399,\cdot)\)
\(\chi_{7260}(3059,\cdot)\)
\(\chi_{7260}(3719,\cdot)\)
\(\chi_{7260}(4379,\cdot)\)
\(\chi_{7260}(5039,\cdot)\)
\(\chi_{7260}(5699,\cdot)\)
\(\chi_{7260}(6359,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3631,4841,4357,7141)\) → \((-1,-1,-1,e\left(\frac{5}{11}\right))\)
\(a\) |
\(-1\) | \(1\) | \(7\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 7260 }(3059, a) \) |
\(1\) | \(1\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{4}{11}\right)\) |
sage:chi.jacobi_sum(n)