sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7260, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([55,0,0,53]))
pari:[g,chi] = znchar(Mod(151,7260))
\(\chi_{7260}(151,\cdot)\)
\(\chi_{7260}(211,\cdot)\)
\(\chi_{7260}(271,\cdot)\)
\(\chi_{7260}(391,\cdot)\)
\(\chi_{7260}(811,\cdot)\)
\(\chi_{7260}(871,\cdot)\)
\(\chi_{7260}(931,\cdot)\)
\(\chi_{7260}(1051,\cdot)\)
\(\chi_{7260}(1471,\cdot)\)
\(\chi_{7260}(1531,\cdot)\)
\(\chi_{7260}(1591,\cdot)\)
\(\chi_{7260}(1711,\cdot)\)
\(\chi_{7260}(2131,\cdot)\)
\(\chi_{7260}(2191,\cdot)\)
\(\chi_{7260}(2251,\cdot)\)
\(\chi_{7260}(2371,\cdot)\)
\(\chi_{7260}(2791,\cdot)\)
\(\chi_{7260}(2851,\cdot)\)
\(\chi_{7260}(2911,\cdot)\)
\(\chi_{7260}(3031,\cdot)\)
\(\chi_{7260}(3451,\cdot)\)
\(\chi_{7260}(3511,\cdot)\)
\(\chi_{7260}(3571,\cdot)\)
\(\chi_{7260}(3691,\cdot)\)
\(\chi_{7260}(4171,\cdot)\)
\(\chi_{7260}(4231,\cdot)\)
\(\chi_{7260}(4351,\cdot)\)
\(\chi_{7260}(4771,\cdot)\)
\(\chi_{7260}(4891,\cdot)\)
\(\chi_{7260}(5011,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3631,4841,4357,7141)\) → \((-1,1,1,e\left(\frac{53}{110}\right))\)
\(a\) |
\(-1\) | \(1\) | \(7\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 7260 }(151, a) \) |
\(1\) | \(1\) | \(e\left(\frac{48}{55}\right)\) | \(e\left(\frac{73}{110}\right)\) | \(e\left(\frac{67}{110}\right)\) | \(e\left(\frac{27}{55}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{21}{110}\right)\) | \(e\left(\frac{103}{110}\right)\) | \(e\left(\frac{13}{55}\right)\) | \(e\left(\frac{9}{110}\right)\) | \(e\left(\frac{6}{11}\right)\) |
sage:chi.jacobi_sum(n)