Properties

Label 7260.13
Modulus $7260$
Conductor $605$
Order $220$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7260, base_ring=CyclotomicField(220)) M = H._module chi = DirichletCharacter(H, M([0,0,165,202]))
 
Copy content pari:[g,chi] = znchar(Mod(13,7260))
 

Basic properties

Modulus: \(7260\)
Conductor: \(605\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(220\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{605}(13,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 7260.dr

\(\chi_{7260}(13,\cdot)\) \(\chi_{7260}(73,\cdot)\) \(\chi_{7260}(193,\cdot)\) \(\chi_{7260}(217,\cdot)\) \(\chi_{7260}(277,\cdot)\) \(\chi_{7260}(337,\cdot)\) \(\chi_{7260}(613,\cdot)\) \(\chi_{7260}(673,\cdot)\) \(\chi_{7260}(733,\cdot)\) \(\chi_{7260}(853,\cdot)\) \(\chi_{7260}(877,\cdot)\) \(\chi_{7260}(937,\cdot)\) \(\chi_{7260}(997,\cdot)\) \(\chi_{7260}(1117,\cdot)\) \(\chi_{7260}(1273,\cdot)\) \(\chi_{7260}(1333,\cdot)\) \(\chi_{7260}(1393,\cdot)\) \(\chi_{7260}(1513,\cdot)\) \(\chi_{7260}(1537,\cdot)\) \(\chi_{7260}(1597,\cdot)\) \(\chi_{7260}(1657,\cdot)\) \(\chi_{7260}(1777,\cdot)\) \(\chi_{7260}(1993,\cdot)\) \(\chi_{7260}(2053,\cdot)\) \(\chi_{7260}(2173,\cdot)\) \(\chi_{7260}(2197,\cdot)\) \(\chi_{7260}(2257,\cdot)\) \(\chi_{7260}(2317,\cdot)\) \(\chi_{7260}(2437,\cdot)\) \(\chi_{7260}(2593,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{220})$
Fixed field: Number field defined by a degree 220 polynomial (not computed)

Values on generators

\((3631,4841,4357,7141)\) → \((1,1,-i,e\left(\frac{101}{110}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 7260 }(13, a) \) \(1\)\(1\)\(e\left(\frac{39}{220}\right)\)\(e\left(\frac{217}{220}\right)\)\(e\left(\frac{163}{220}\right)\)\(e\left(\frac{39}{55}\right)\)\(e\left(\frac{23}{44}\right)\)\(e\left(\frac{6}{55}\right)\)\(e\left(\frac{53}{55}\right)\)\(e\left(\frac{69}{220}\right)\)\(e\left(\frac{13}{110}\right)\)\(e\left(\frac{9}{44}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 7260 }(13,a) \;\) at \(\;a = \) e.g. 2