sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(71, base_ring=CyclotomicField(70))
M = H._module
chi = DirichletCharacter(H, M([4]))
pari:[g,chi] = znchar(Mod(58,71))
| Modulus: | \(71\) | |
| Conductor: | \(71\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(35\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{71}(2,\cdot)\)
\(\chi_{71}(3,\cdot)\)
\(\chi_{71}(4,\cdot)\)
\(\chi_{71}(6,\cdot)\)
\(\chi_{71}(8,\cdot)\)
\(\chi_{71}(9,\cdot)\)
\(\chi_{71}(10,\cdot)\)
\(\chi_{71}(12,\cdot)\)
\(\chi_{71}(15,\cdot)\)
\(\chi_{71}(16,\cdot)\)
\(\chi_{71}(18,\cdot)\)
\(\chi_{71}(19,\cdot)\)
\(\chi_{71}(24,\cdot)\)
\(\chi_{71}(27,\cdot)\)
\(\chi_{71}(29,\cdot)\)
\(\chi_{71}(36,\cdot)\)
\(\chi_{71}(38,\cdot)\)
\(\chi_{71}(40,\cdot)\)
\(\chi_{71}(43,\cdot)\)
\(\chi_{71}(49,\cdot)\)
\(\chi_{71}(50,\cdot)\)
\(\chi_{71}(58,\cdot)\)
\(\chi_{71}(60,\cdot)\)
\(\chi_{71}(64,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(7\) → \(e\left(\frac{2}{35}\right)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 71 }(58, a) \) |
\(1\) | \(1\) | \(e\left(\frac{12}{35}\right)\) | \(e\left(\frac{17}{35}\right)\) | \(e\left(\frac{24}{35}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{29}{35}\right)\) | \(e\left(\frac{2}{35}\right)\) | \(e\left(\frac{1}{35}\right)\) | \(e\left(\frac{34}{35}\right)\) | \(e\left(\frac{33}{35}\right)\) | \(e\left(\frac{27}{35}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)