Properties

Label 704.z
Modulus $704$
Conductor $64$
Order $16$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(704, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([0,7,0])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(45,704)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(704\)
Conductor: \(64\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 64.i
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: \(\Q(\zeta_{64})^+\)

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(13\) \(15\) \(17\) \(19\) \(21\) \(23\)
\(\chi_{704}(45,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{9}{16}\right)\) \(-i\) \(i\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{704}(133,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{15}{16}\right)\) \(i\) \(-i\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{704}(221,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{5}{16}\right)\) \(-i\) \(i\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{704}(309,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{11}{16}\right)\) \(i\) \(-i\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{704}(397,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{1}{16}\right)\) \(-i\) \(i\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{704}(485,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{7}{16}\right)\) \(i\) \(-i\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{704}(573,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{13}{16}\right)\) \(-i\) \(i\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{704}(661,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{3}{16}\right)\) \(i\) \(-i\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{3}{8}\right)\)