Properties

Label 704.347
Modulus $704$
Conductor $704$
Order $80$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(704, base_ring=CyclotomicField(80)) M = H._module chi = DirichletCharacter(H, M([40,45,72]))
 
Copy content pari:[g,chi] = znchar(Mod(347,704))
 

Basic properties

Modulus: \(704\)
Conductor: \(704\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(80\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 704.bk

\(\chi_{704}(19,\cdot)\) \(\chi_{704}(35,\cdot)\) \(\chi_{704}(51,\cdot)\) \(\chi_{704}(83,\cdot)\) \(\chi_{704}(107,\cdot)\) \(\chi_{704}(123,\cdot)\) \(\chi_{704}(139,\cdot)\) \(\chi_{704}(171,\cdot)\) \(\chi_{704}(195,\cdot)\) \(\chi_{704}(211,\cdot)\) \(\chi_{704}(227,\cdot)\) \(\chi_{704}(259,\cdot)\) \(\chi_{704}(283,\cdot)\) \(\chi_{704}(299,\cdot)\) \(\chi_{704}(315,\cdot)\) \(\chi_{704}(347,\cdot)\) \(\chi_{704}(371,\cdot)\) \(\chi_{704}(387,\cdot)\) \(\chi_{704}(403,\cdot)\) \(\chi_{704}(435,\cdot)\) \(\chi_{704}(459,\cdot)\) \(\chi_{704}(475,\cdot)\) \(\chi_{704}(491,\cdot)\) \(\chi_{704}(523,\cdot)\) \(\chi_{704}(547,\cdot)\) \(\chi_{704}(563,\cdot)\) \(\chi_{704}(579,\cdot)\) \(\chi_{704}(611,\cdot)\) \(\chi_{704}(635,\cdot)\) \(\chi_{704}(651,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{80})$
Fixed field: Number field defined by a degree 80 polynomial

Values on generators

\((639,133,321)\) → \((-1,e\left(\frac{9}{16}\right),e\left(\frac{9}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(13\)\(15\)\(17\)\(19\)\(21\)\(23\)
\( \chi_{ 704 }(347, a) \) \(1\)\(1\)\(e\left(\frac{31}{80}\right)\)\(e\left(\frac{13}{80}\right)\)\(e\left(\frac{17}{40}\right)\)\(e\left(\frac{31}{40}\right)\)\(e\left(\frac{27}{80}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{11}{80}\right)\)\(e\left(\frac{13}{16}\right)\)\(e\left(\frac{3}{8}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 704 }(347,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 704 }(347,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 704 }(347,·),\chi_{ 704 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 704 }(347,·)) \;\) at \(\; a,b = \) e.g. 1,2