![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(695, base_ring=CyclotomicField(92))
M = H._module
chi = DirichletCharacter(H, M([69,30]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(695, base_ring=CyclotomicField(92))
M = H._module
chi = DirichletCharacter(H, M([69,30]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(48,695))
        pari:[g,chi] = znchar(Mod(48,695))
         
     
    
  
   | Modulus: | \(695\) |  | 
   | Conductor: | \(695\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(92\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | even | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{695}(8,\cdot)\)
  \(\chi_{695}(23,\cdot)\)
  \(\chi_{695}(27,\cdot)\)
  \(\chi_{695}(33,\cdot)\)
  \(\chi_{695}(48,\cdot)\)
  \(\chi_{695}(62,\cdot)\)
  \(\chi_{695}(82,\cdot)\)
  \(\chi_{695}(87,\cdot)\)
  \(\chi_{695}(103,\cdot)\)
  \(\chi_{695}(133,\cdot)\)
  \(\chi_{695}(147,\cdot)\)
  \(\chi_{695}(153,\cdot)\)
  \(\chi_{695}(162,\cdot)\)
  \(\chi_{695}(172,\cdot)\)
  \(\chi_{695}(178,\cdot)\)
  \(\chi_{695}(187,\cdot)\)
  \(\chi_{695}(198,\cdot)\)
  \(\chi_{695}(213,\cdot)\)
  \(\chi_{695}(223,\cdot)\)
  \(\chi_{695}(233,\cdot)\)
  \(\chi_{695}(242,\cdot)\)
  \(\chi_{695}(272,\cdot)\)
  \(\chi_{695}(288,\cdot)\)
  \(\chi_{695}(292,\cdot)\)
  \(\chi_{695}(317,\cdot)\)
  \(\chi_{695}(337,\cdot)\)
  \(\chi_{695}(338,\cdot)\)
  \(\chi_{695}(352,\cdot)\)
  \(\chi_{695}(353,\cdot)\)
  \(\chi_{695}(362,\cdot)\)
 ... 
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((557,141)\) → \((-i,e\left(\frac{15}{46}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) | 
    
    
      | \( \chi_{ 695 }(48, a) \) | \(1\) | \(1\) | \(e\left(\frac{7}{92}\right)\) | \(e\left(\frac{57}{92}\right)\) | \(e\left(\frac{7}{46}\right)\) | \(e\left(\frac{16}{23}\right)\) | \(e\left(\frac{5}{92}\right)\) | \(e\left(\frac{21}{92}\right)\) | \(e\left(\frac{11}{46}\right)\) | \(e\left(\frac{18}{23}\right)\) | \(e\left(\frac{71}{92}\right)\) | \(e\left(\frac{11}{92}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.gauss_sum(a)
        sage:chi.gauss_sum(a)
         
     
    
    
        ![Copy content]() pari:znchargauss(g,chi,a)
        pari:znchargauss(g,chi,a)
         
     
    
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.kloosterman_sum(a,b)
        sage:chi.kloosterman_sum(a,b)