Properties

Label 6897.dc
Modulus $6897$
Conductor $6897$
Order $198$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6897, base_ring=CyclotomicField(198)) M = H._module chi = DirichletCharacter(H, M([99,108,55])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(89,6897)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(6897\)
Conductor: \(6897\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(198\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{99})$
Fixed field: Number field defined by a degree 198 polynomial (not computed)

First 31 of 60 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(13\) \(14\) \(16\) \(17\)
\(\chi_{6897}(89,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{99}\right)\) \(e\left(\frac{64}{99}\right)\) \(e\left(\frac{61}{198}\right)\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{32}{33}\right)\) \(e\left(\frac{125}{198}\right)\) \(e\left(\frac{95}{198}\right)\) \(e\left(\frac{80}{99}\right)\) \(e\left(\frac{29}{99}\right)\) \(e\left(\frac{1}{198}\right)\)
\(\chi_{6897}(155,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{99}\right)\) \(e\left(\frac{35}{99}\right)\) \(e\left(\frac{137}{198}\right)\) \(e\left(\frac{17}{33}\right)\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{73}{198}\right)\) \(e\left(\frac{103}{198}\right)\) \(e\left(\frac{19}{99}\right)\) \(e\left(\frac{70}{99}\right)\) \(e\left(\frac{197}{198}\right)\)
\(\chi_{6897}(287,\cdot)\) \(1\) \(1\) \(e\left(\frac{82}{99}\right)\) \(e\left(\frac{65}{99}\right)\) \(e\left(\frac{113}{198}\right)\) \(e\left(\frac{8}{33}\right)\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{79}{198}\right)\) \(e\left(\frac{163}{198}\right)\) \(e\left(\frac{7}{99}\right)\) \(e\left(\frac{31}{99}\right)\) \(e\left(\frac{83}{198}\right)\)
\(\chi_{6897}(452,\cdot)\) \(1\) \(1\) \(e\left(\frac{65}{99}\right)\) \(e\left(\frac{31}{99}\right)\) \(e\left(\frac{127}{198}\right)\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{32}{33}\right)\) \(e\left(\frac{59}{198}\right)\) \(e\left(\frac{29}{198}\right)\) \(e\left(\frac{14}{99}\right)\) \(e\left(\frac{62}{99}\right)\) \(e\left(\frac{67}{198}\right)\)
\(\chi_{6897}(584,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{99}\right)\) \(e\left(\frac{50}{99}\right)\) \(e\left(\frac{125}{198}\right)\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{25}{33}\right)\) \(e\left(\frac{175}{198}\right)\) \(e\left(\frac{133}{198}\right)\) \(e\left(\frac{13}{99}\right)\) \(e\left(\frac{1}{99}\right)\) \(e\left(\frac{41}{198}\right)\)
\(\chi_{6897}(716,\cdot)\) \(1\) \(1\) \(e\left(\frac{95}{99}\right)\) \(e\left(\frac{91}{99}\right)\) \(e\left(\frac{79}{198}\right)\) \(e\left(\frac{31}{33}\right)\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{71}{198}\right)\) \(e\left(\frac{149}{198}\right)\) \(e\left(\frac{89}{99}\right)\) \(e\left(\frac{83}{99}\right)\) \(e\left(\frac{37}{198}\right)\)
\(\chi_{6897}(782,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{99}\right)\) \(e\left(\frac{62}{99}\right)\) \(e\left(\frac{155}{198}\right)\) \(e\left(\frac{32}{33}\right)\) \(e\left(\frac{31}{33}\right)\) \(e\left(\frac{19}{198}\right)\) \(e\left(\frac{157}{198}\right)\) \(e\left(\frac{28}{99}\right)\) \(e\left(\frac{25}{99}\right)\) \(e\left(\frac{35}{198}\right)\)
\(\chi_{6897}(914,\cdot)\) \(1\) \(1\) \(e\left(\frac{46}{99}\right)\) \(e\left(\frac{92}{99}\right)\) \(e\left(\frac{131}{198}\right)\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{25}{198}\right)\) \(e\left(\frac{19}{198}\right)\) \(e\left(\frac{16}{99}\right)\) \(e\left(\frac{85}{99}\right)\) \(e\left(\frac{119}{198}\right)\)
\(\chi_{6897}(1079,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{99}\right)\) \(e\left(\frac{58}{99}\right)\) \(e\left(\frac{145}{198}\right)\) \(e\left(\frac{31}{33}\right)\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{5}{198}\right)\) \(e\left(\frac{83}{198}\right)\) \(e\left(\frac{23}{99}\right)\) \(e\left(\frac{17}{99}\right)\) \(e\left(\frac{103}{198}\right)\)
\(\chi_{6897}(1112,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{99}\right)\) \(e\left(\frac{16}{99}\right)\) \(e\left(\frac{139}{198}\right)\) \(e\left(\frac{4}{33}\right)\) \(e\left(\frac{8}{33}\right)\) \(e\left(\frac{155}{198}\right)\) \(e\left(\frac{197}{198}\right)\) \(e\left(\frac{20}{99}\right)\) \(e\left(\frac{32}{99}\right)\) \(e\left(\frac{25}{198}\right)\)
\(\chi_{6897}(1343,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{99}\right)\) \(e\left(\frac{19}{99}\right)\) \(e\left(\frac{97}{198}\right)\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{26}{33}\right)\) \(e\left(\frac{17}{198}\right)\) \(e\left(\frac{5}{198}\right)\) \(e\left(\frac{98}{99}\right)\) \(e\left(\frac{38}{99}\right)\) \(e\left(\frac{73}{198}\right)\)
\(\chi_{6897}(1409,\cdot)\) \(1\) \(1\) \(e\left(\frac{94}{99}\right)\) \(e\left(\frac{89}{99}\right)\) \(e\left(\frac{173}{198}\right)\) \(e\left(\frac{14}{33}\right)\) \(e\left(\frac{28}{33}\right)\) \(e\left(\frac{163}{198}\right)\) \(e\left(\frac{13}{198}\right)\) \(e\left(\frac{37}{99}\right)\) \(e\left(\frac{79}{99}\right)\) \(e\left(\frac{71}{198}\right)\)
\(\chi_{6897}(1541,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{99}\right)\) \(e\left(\frac{20}{99}\right)\) \(e\left(\frac{149}{198}\right)\) \(e\left(\frac{5}{33}\right)\) \(e\left(\frac{10}{33}\right)\) \(e\left(\frac{169}{198}\right)\) \(e\left(\frac{73}{198}\right)\) \(e\left(\frac{25}{99}\right)\) \(e\left(\frac{40}{99}\right)\) \(e\left(\frac{155}{198}\right)\)
\(\chi_{6897}(1706,\cdot)\) \(1\) \(1\) \(e\left(\frac{92}{99}\right)\) \(e\left(\frac{85}{99}\right)\) \(e\left(\frac{163}{198}\right)\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{26}{33}\right)\) \(e\left(\frac{149}{198}\right)\) \(e\left(\frac{137}{198}\right)\) \(e\left(\frac{32}{99}\right)\) \(e\left(\frac{71}{99}\right)\) \(e\left(\frac{139}{198}\right)\)
\(\chi_{6897}(1739,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{99}\right)\) \(e\left(\frac{43}{99}\right)\) \(e\left(\frac{157}{198}\right)\) \(e\left(\frac{19}{33}\right)\) \(e\left(\frac{5}{33}\right)\) \(e\left(\frac{101}{198}\right)\) \(e\left(\frac{53}{198}\right)\) \(e\left(\frac{29}{99}\right)\) \(e\left(\frac{86}{99}\right)\) \(e\left(\frac{61}{198}\right)\)
\(\chi_{6897}(1838,\cdot)\) \(1\) \(1\) \(e\left(\frac{52}{99}\right)\) \(e\left(\frac{5}{99}\right)\) \(e\left(\frac{161}{198}\right)\) \(e\left(\frac{26}{33}\right)\) \(e\left(\frac{19}{33}\right)\) \(e\left(\frac{67}{198}\right)\) \(e\left(\frac{43}{198}\right)\) \(e\left(\frac{31}{99}\right)\) \(e\left(\frac{10}{99}\right)\) \(e\left(\frac{113}{198}\right)\)
\(\chi_{6897}(1970,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{99}\right)\) \(e\left(\frac{46}{99}\right)\) \(e\left(\frac{115}{198}\right)\) \(e\left(\frac{28}{33}\right)\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{161}{198}\right)\) \(e\left(\frac{59}{198}\right)\) \(e\left(\frac{8}{99}\right)\) \(e\left(\frac{92}{99}\right)\) \(e\left(\frac{109}{198}\right)\)
\(\chi_{6897}(2036,\cdot)\) \(1\) \(1\) \(e\left(\frac{58}{99}\right)\) \(e\left(\frac{17}{99}\right)\) \(e\left(\frac{191}{198}\right)\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{25}{33}\right)\) \(e\left(\frac{109}{198}\right)\) \(e\left(\frac{67}{198}\right)\) \(e\left(\frac{46}{99}\right)\) \(e\left(\frac{34}{99}\right)\) \(e\left(\frac{107}{198}\right)\)
\(\chi_{6897}(2168,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{99}\right)\) \(e\left(\frac{47}{99}\right)\) \(e\left(\frac{167}{198}\right)\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{7}{33}\right)\) \(e\left(\frac{115}{198}\right)\) \(e\left(\frac{127}{198}\right)\) \(e\left(\frac{34}{99}\right)\) \(e\left(\frac{94}{99}\right)\) \(e\left(\frac{191}{198}\right)\)
\(\chi_{6897}(2333,\cdot)\) \(1\) \(1\) \(e\left(\frac{56}{99}\right)\) \(e\left(\frac{13}{99}\right)\) \(e\left(\frac{181}{198}\right)\) \(e\left(\frac{28}{33}\right)\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{95}{198}\right)\) \(e\left(\frac{191}{198}\right)\) \(e\left(\frac{41}{99}\right)\) \(e\left(\frac{26}{99}\right)\) \(e\left(\frac{175}{198}\right)\)
\(\chi_{6897}(2366,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{99}\right)\) \(e\left(\frac{70}{99}\right)\) \(e\left(\frac{175}{198}\right)\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{47}{198}\right)\) \(e\left(\frac{107}{198}\right)\) \(e\left(\frac{38}{99}\right)\) \(e\left(\frac{41}{99}\right)\) \(e\left(\frac{97}{198}\right)\)
\(\chi_{6897}(2465,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{99}\right)\) \(e\left(\frac{32}{99}\right)\) \(e\left(\frac{179}{198}\right)\) \(e\left(\frac{8}{33}\right)\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{13}{198}\right)\) \(e\left(\frac{97}{198}\right)\) \(e\left(\frac{40}{99}\right)\) \(e\left(\frac{64}{99}\right)\) \(e\left(\frac{149}{198}\right)\)
\(\chi_{6897}(2597,\cdot)\) \(1\) \(1\) \(e\left(\frac{86}{99}\right)\) \(e\left(\frac{73}{99}\right)\) \(e\left(\frac{133}{198}\right)\) \(e\left(\frac{10}{33}\right)\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{107}{198}\right)\) \(e\left(\frac{113}{198}\right)\) \(e\left(\frac{17}{99}\right)\) \(e\left(\frac{47}{99}\right)\) \(e\left(\frac{145}{198}\right)\)
\(\chi_{6897}(2795,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{99}\right)\) \(e\left(\frac{74}{99}\right)\) \(e\left(\frac{185}{198}\right)\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{4}{33}\right)\) \(e\left(\frac{61}{198}\right)\) \(e\left(\frac{181}{198}\right)\) \(e\left(\frac{43}{99}\right)\) \(e\left(\frac{49}{99}\right)\) \(e\left(\frac{29}{198}\right)\)
\(\chi_{6897}(2960,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{99}\right)\) \(e\left(\frac{40}{99}\right)\) \(e\left(\frac{1}{198}\right)\) \(e\left(\frac{10}{33}\right)\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{41}{198}\right)\) \(e\left(\frac{47}{198}\right)\) \(e\left(\frac{50}{99}\right)\) \(e\left(\frac{80}{99}\right)\) \(e\left(\frac{13}{198}\right)\)
\(\chi_{6897}(2993,\cdot)\) \(1\) \(1\) \(e\left(\frac{98}{99}\right)\) \(e\left(\frac{97}{99}\right)\) \(e\left(\frac{193}{198}\right)\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{32}{33}\right)\) \(e\left(\frac{191}{198}\right)\) \(e\left(\frac{161}{198}\right)\) \(e\left(\frac{47}{99}\right)\) \(e\left(\frac{95}{99}\right)\) \(e\left(\frac{133}{198}\right)\)
\(\chi_{6897}(3092,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{99}\right)\) \(e\left(\frac{59}{99}\right)\) \(e\left(\frac{197}{198}\right)\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{157}{198}\right)\) \(e\left(\frac{151}{198}\right)\) \(e\left(\frac{49}{99}\right)\) \(e\left(\frac{19}{99}\right)\) \(e\left(\frac{185}{198}\right)\)
\(\chi_{6897}(3224,\cdot)\) \(1\) \(1\) \(e\left(\frac{50}{99}\right)\) \(e\left(\frac{1}{99}\right)\) \(e\left(\frac{151}{198}\right)\) \(e\left(\frac{25}{33}\right)\) \(e\left(\frac{17}{33}\right)\) \(e\left(\frac{53}{198}\right)\) \(e\left(\frac{167}{198}\right)\) \(e\left(\frac{26}{99}\right)\) \(e\left(\frac{2}{99}\right)\) \(e\left(\frac{181}{198}\right)\)
\(\chi_{6897}(3290,\cdot)\) \(1\) \(1\) \(e\left(\frac{85}{99}\right)\) \(e\left(\frac{71}{99}\right)\) \(e\left(\frac{29}{198}\right)\) \(e\left(\frac{26}{33}\right)\) \(e\left(\frac{19}{33}\right)\) \(e\left(\frac{1}{198}\right)\) \(e\left(\frac{175}{198}\right)\) \(e\left(\frac{64}{99}\right)\) \(e\left(\frac{43}{99}\right)\) \(e\left(\frac{179}{198}\right)\)
\(\chi_{6897}(3422,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{99}\right)\) \(e\left(\frac{2}{99}\right)\) \(e\left(\frac{5}{198}\right)\) \(e\left(\frac{17}{33}\right)\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{7}{198}\right)\) \(e\left(\frac{37}{198}\right)\) \(e\left(\frac{52}{99}\right)\) \(e\left(\frac{4}{99}\right)\) \(e\left(\frac{65}{198}\right)\)
\(\chi_{6897}(3587,\cdot)\) \(1\) \(1\) \(e\left(\frac{83}{99}\right)\) \(e\left(\frac{67}{99}\right)\) \(e\left(\frac{19}{198}\right)\) \(e\left(\frac{25}{33}\right)\) \(e\left(\frac{17}{33}\right)\) \(e\left(\frac{185}{198}\right)\) \(e\left(\frac{101}{198}\right)\) \(e\left(\frac{59}{99}\right)\) \(e\left(\frac{35}{99}\right)\) \(e\left(\frac{49}{198}\right)\)