sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6897, base_ring=CyclotomicField(330))
M = H._module
chi = DirichletCharacter(H, M([165,87,110]))
pari:[g,chi] = znchar(Mod(83,6897))
| Modulus: | \(6897\) | |
| Conductor: | \(6897\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(330\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6897}(68,\cdot)\)
\(\chi_{6897}(83,\cdot)\)
\(\chi_{6897}(140,\cdot)\)
\(\chi_{6897}(182,\cdot)\)
\(\chi_{6897}(425,\cdot)\)
\(\chi_{6897}(695,\cdot)\)
\(\chi_{6897}(710,\cdot)\)
\(\chi_{6897}(767,\cdot)\)
\(\chi_{6897}(809,\cdot)\)
\(\chi_{6897}(866,\cdot)\)
\(\chi_{6897}(1052,\cdot)\)
\(\chi_{6897}(1151,\cdot)\)
\(\chi_{6897}(1223,\cdot)\)
\(\chi_{6897}(1337,\cdot)\)
\(\chi_{6897}(1394,\cdot)\)
\(\chi_{6897}(1436,\cdot)\)
\(\chi_{6897}(1493,\cdot)\)
\(\chi_{6897}(1679,\cdot)\)
\(\chi_{6897}(1778,\cdot)\)
\(\chi_{6897}(1850,\cdot)\)
\(\chi_{6897}(1949,\cdot)\)
\(\chi_{6897}(1964,\cdot)\)
\(\chi_{6897}(2021,\cdot)\)
\(\chi_{6897}(2063,\cdot)\)
\(\chi_{6897}(2120,\cdot)\)
\(\chi_{6897}(2306,\cdot)\)
\(\chi_{6897}(2405,\cdot)\)
\(\chi_{6897}(2477,\cdot)\)
\(\chi_{6897}(2576,\cdot)\)
\(\chi_{6897}(2591,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2300,970,3631)\) → \((-1,e\left(\frac{29}{110}\right),e\left(\frac{1}{3}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(13\) | \(14\) | \(16\) | \(17\) |
| \( \chi_{ 6897 }(83, a) \) |
\(1\) | \(1\) | \(e\left(\frac{16}{165}\right)\) | \(e\left(\frac{32}{165}\right)\) | \(e\left(\frac{113}{330}\right)\) | \(e\left(\frac{93}{110}\right)\) | \(e\left(\frac{16}{55}\right)\) | \(e\left(\frac{29}{66}\right)\) | \(e\left(\frac{97}{330}\right)\) | \(e\left(\frac{311}{330}\right)\) | \(e\left(\frac{64}{165}\right)\) | \(e\left(\frac{124}{165}\right)\) |
sage:chi.jacobi_sum(n)