Properties

Label 6800.ir
Modulus $6800$
Conductor $1700$
Order $40$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6800, base_ring=CyclotomicField(40)) M = H._module chi = DirichletCharacter(H, M([20,0,2,25])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(127,6800)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(6800\)
Conductor: \(1700\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(40\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 1700.ch
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{40})\)
Fixed field: 40.40.108345874259790178191215677547620921193478563800454139709472656250000000000000000000000000000000000000000.2

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(13\) \(19\) \(21\) \(23\) \(27\) \(29\)
\(\chi_{6800}(127,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{9}{40}\right)\)
\(\chi_{6800}(223,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{19}{40}\right)\)
\(\chi_{6800}(927,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{29}{40}\right)\)
\(\chi_{6800}(1103,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{23}{40}\right)\)
\(\chi_{6800}(1487,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{1}{40}\right)\)
\(\chi_{6800}(1583,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{27}{40}\right)\)
\(\chi_{6800}(2287,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{21}{40}\right)\)
\(\chi_{6800}(2463,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{31}{40}\right)\)
\(\chi_{6800}(2847,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{33}{40}\right)\)
\(\chi_{6800}(3647,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{13}{40}\right)\)
\(\chi_{6800}(3823,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{39}{40}\right)\)
\(\chi_{6800}(4303,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{3}{40}\right)\)
\(\chi_{6800}(5183,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{7}{40}\right)\)
\(\chi_{6800}(5567,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{17}{40}\right)\)
\(\chi_{6800}(5663,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{11}{40}\right)\)
\(\chi_{6800}(6367,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{37}{40}\right)\)