Properties

Label 6800.gm
Modulus $6800$
Conductor $6800$
Order $20$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6800, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([0,15,14,10])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(509,6800)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(6800\)
Conductor: \(6800\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(20\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: Number field defined by a degree 20 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(13\) \(19\) \(21\) \(23\) \(27\) \(29\)
\(\chi_{6800}(509,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{20}\right)\) \(-1\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{3}{20}\right)\)
\(\chi_{6800}(1189,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{20}\right)\) \(-1\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{17}{20}\right)\)
\(\chi_{6800}(1869,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{20}\right)\) \(-1\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{11}{20}\right)\)
\(\chi_{6800}(3229,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{20}\right)\) \(-1\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{19}{20}\right)\)
\(\chi_{6800}(3909,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{20}\right)\) \(-1\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{13}{20}\right)\)
\(\chi_{6800}(4589,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{20}\right)\) \(-1\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{7}{20}\right)\)
\(\chi_{6800}(5269,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{20}\right)\) \(-1\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{1}{20}\right)\)
\(\chi_{6800}(6629,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{20}\right)\) \(-1\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{9}{20}\right)\)