sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6800, base_ring=CyclotomicField(80))
M = H._module
chi = DirichletCharacter(H, M([0,60,28,55]))
pari:[g,chi] = znchar(Mod(653,6800))
Modulus: | \(6800\) | |
Conductor: | \(6800\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(80\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6800}(37,\cdot)\)
\(\chi_{6800}(277,\cdot)\)
\(\chi_{6800}(333,\cdot)\)
\(\chi_{6800}(437,\cdot)\)
\(\chi_{6800}(653,\cdot)\)
\(\chi_{6800}(677,\cdot)\)
\(\chi_{6800}(1133,\cdot)\)
\(\chi_{6800}(1213,\cdot)\)
\(\chi_{6800}(1397,\cdot)\)
\(\chi_{6800}(1637,\cdot)\)
\(\chi_{6800}(1797,\cdot)\)
\(\chi_{6800}(2013,\cdot)\)
\(\chi_{6800}(2037,\cdot)\)
\(\chi_{6800}(2573,\cdot)\)
\(\chi_{6800}(2997,\cdot)\)
\(\chi_{6800}(3053,\cdot)\)
\(\chi_{6800}(3373,\cdot)\)
\(\chi_{6800}(3397,\cdot)\)
\(\chi_{6800}(3853,\cdot)\)
\(\chi_{6800}(3933,\cdot)\)
\(\chi_{6800}(4117,\cdot)\)
\(\chi_{6800}(4413,\cdot)\)
\(\chi_{6800}(4517,\cdot)\)
\(\chi_{6800}(4733,\cdot)\)
\(\chi_{6800}(5213,\cdot)\)
\(\chi_{6800}(5477,\cdot)\)
\(\chi_{6800}(5717,\cdot)\)
\(\chi_{6800}(5773,\cdot)\)
\(\chi_{6800}(5877,\cdot)\)
\(\chi_{6800}(6117,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5951,1701,2177,1601)\) → \((1,-i,e\left(\frac{7}{20}\right),e\left(\frac{11}{16}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 6800 }(653, a) \) |
\(1\) | \(1\) | \(e\left(\frac{31}{80}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{31}{40}\right)\) | \(e\left(\frac{13}{80}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{7}{40}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{53}{80}\right)\) | \(e\left(\frac{13}{80}\right)\) | \(e\left(\frac{71}{80}\right)\) |
sage:chi.jacobi_sum(n)