sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6800, base_ring=CyclotomicField(80))
M = H._module
chi = DirichletCharacter(H, M([40,60,56,15]))
pari:[g,chi] = znchar(Mod(5059,6800))
Modulus: | \(6800\) | |
Conductor: | \(6800\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(80\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6800}(139,\cdot)\)
\(\chi_{6800}(379,\cdot)\)
\(\chi_{6800}(419,\cdot)\)
\(\chi_{6800}(539,\cdot)\)
\(\chi_{6800}(779,\cdot)\)
\(\chi_{6800}(979,\cdot)\)
\(\chi_{6800}(1739,\cdot)\)
\(\chi_{6800}(1779,\cdot)\)
\(\chi_{6800}(1859,\cdot)\)
\(\chi_{6800}(2139,\cdot)\)
\(\chi_{6800}(2339,\cdot)\)
\(\chi_{6800}(2659,\cdot)\)
\(\chi_{6800}(2859,\cdot)\)
\(\chi_{6800}(3139,\cdot)\)
\(\chi_{6800}(3219,\cdot)\)
\(\chi_{6800}(3259,\cdot)\)
\(\chi_{6800}(4019,\cdot)\)
\(\chi_{6800}(4219,\cdot)\)
\(\chi_{6800}(4459,\cdot)\)
\(\chi_{6800}(4579,\cdot)\)
\(\chi_{6800}(4619,\cdot)\)
\(\chi_{6800}(4859,\cdot)\)
\(\chi_{6800}(5059,\cdot)\)
\(\chi_{6800}(5379,\cdot)\)
\(\chi_{6800}(5579,\cdot)\)
\(\chi_{6800}(5819,\cdot)\)
\(\chi_{6800}(5859,\cdot)\)
\(\chi_{6800}(5939,\cdot)\)
\(\chi_{6800}(5979,\cdot)\)
\(\chi_{6800}(6219,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5951,1701,2177,1601)\) → \((-1,-i,e\left(\frac{7}{10}\right),e\left(\frac{3}{16}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 6800 }(5059, a) \) |
\(1\) | \(1\) | \(e\left(\frac{67}{80}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{27}{40}\right)\) | \(e\left(\frac{61}{80}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{39}{40}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{41}{80}\right)\) | \(e\left(\frac{41}{80}\right)\) | \(e\left(\frac{7}{80}\right)\) |
sage:chi.jacobi_sum(n)