Properties

Label 6800.3057
Modulus $6800$
Conductor $85$
Order $16$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6800, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([0,0,4,9]))
 
Copy content pari:[g,chi] = znchar(Mod(3057,6800))
 

Basic properties

Modulus: \(6800\)
Conductor: \(85\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{85}(82,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 6800.fq

\(\chi_{6800}(193,\cdot)\) \(\chi_{6800}(993,\cdot)\) \(\chi_{6800}(1057,\cdot)\) \(\chi_{6800}(1457,\cdot)\) \(\chi_{6800}(2657,\cdot)\) \(\chi_{6800}(3057,\cdot)\) \(\chi_{6800}(3393,\cdot)\) \(\chi_{6800}(4193,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.16.698833752810013621337890625.1

Values on generators

\((5951,1701,2177,1601)\) → \((1,1,i,e\left(\frac{9}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 6800 }(3057, a) \) \(1\)\(1\)\(e\left(\frac{5}{16}\right)\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{15}{16}\right)\)\(1\)\(e\left(\frac{3}{8}\right)\)\(-i\)\(e\left(\frac{3}{16}\right)\)\(e\left(\frac{15}{16}\right)\)\(e\left(\frac{13}{16}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 6800 }(3057,a) \;\) at \(\;a = \) e.g. 2