Properties

Label 6800.2519
Modulus $6800$
Conductor $3400$
Order $80$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6800, base_ring=CyclotomicField(80)) M = H._module chi = DirichletCharacter(H, M([40,40,72,5]))
 
Copy content pari:[g,chi] = znchar(Mod(2519,6800))
 

Basic properties

Modulus: \(6800\)
Conductor: \(3400\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(80\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{3400}(819,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 6800.jt

\(\chi_{6800}(39,\cdot)\) \(\chi_{6800}(279,\cdot)\) \(\chi_{6800}(439,\cdot)\) \(\chi_{6800}(759,\cdot)\) \(\chi_{6800}(839,\cdot)\) \(\chi_{6800}(1159,\cdot)\) \(\chi_{6800}(1319,\cdot)\) \(\chi_{6800}(1559,\cdot)\) \(\chi_{6800}(1639,\cdot)\) \(\chi_{6800}(2119,\cdot)\) \(\chi_{6800}(2519,\cdot)\) \(\chi_{6800}(2679,\cdot)\) \(\chi_{6800}(2759,\cdot)\) \(\chi_{6800}(2919,\cdot)\) \(\chi_{6800}(3159,\cdot)\) \(\chi_{6800}(3479,\cdot)\) \(\chi_{6800}(3559,\cdot)\) \(\chi_{6800}(3879,\cdot)\) \(\chi_{6800}(4039,\cdot)\) \(\chi_{6800}(4119,\cdot)\) \(\chi_{6800}(4279,\cdot)\) \(\chi_{6800}(4359,\cdot)\) \(\chi_{6800}(4519,\cdot)\) \(\chi_{6800}(4839,\cdot)\) \(\chi_{6800}(4919,\cdot)\) \(\chi_{6800}(5239,\cdot)\) \(\chi_{6800}(5479,\cdot)\) \(\chi_{6800}(5639,\cdot)\) \(\chi_{6800}(5719,\cdot)\) \(\chi_{6800}(5879,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{80})$
Fixed field: Number field defined by a degree 80 polynomial

Values on generators

\((5951,1701,2177,1601)\) → \((-1,-1,e\left(\frac{9}{10}\right),e\left(\frac{1}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 6800 }(2519, a) \) \(1\)\(1\)\(e\left(\frac{29}{80}\right)\)\(e\left(\frac{11}{16}\right)\)\(e\left(\frac{29}{40}\right)\)\(e\left(\frac{67}{80}\right)\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{3}{40}\right)\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{27}{80}\right)\)\(e\left(\frac{7}{80}\right)\)\(e\left(\frac{9}{80}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 6800 }(2519,a) \;\) at \(\;a = \) e.g. 2