Properties

Label 6800.1823
Modulus $6800$
Conductor $1700$
Order $20$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6800, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([10,0,11,15]))
 
Copy content pari:[g,chi] = znchar(Mod(1823,6800))
 

Basic properties

Modulus: \(6800\)
Conductor: \(1700\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(20\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1700}(123,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 6800.hp

\(\chi_{6800}(47,\cdot)\) \(\chi_{6800}(463,\cdot)\) \(\chi_{6800}(1823,\cdot)\) \(\chi_{6800}(2767,\cdot)\) \(\chi_{6800}(3183,\cdot)\) \(\chi_{6800}(4127,\cdot)\) \(\chi_{6800}(5487,\cdot)\) \(\chi_{6800}(5903,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: 20.20.8735421910125170266723632812500000000000000000000.2

Values on generators

\((5951,1701,2177,1601)\) → \((-1,1,e\left(\frac{11}{20}\right),-i)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 6800 }(1823, a) \) \(1\)\(1\)\(e\left(\frac{1}{10}\right)\)\(-1\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{17}{20}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 6800 }(1823,a) \;\) at \(\;a = \) e.g. 2