sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6800, base_ring=CyclotomicField(80))
M = H._module
chi = DirichletCharacter(H, M([40,60,16,5]))
pari:[g,chi] = znchar(Mod(1091,6800))
Modulus: | \(6800\) | |
Conductor: | \(6800\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(80\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6800}(11,\cdot)\)
\(\chi_{6800}(91,\cdot)\)
\(\chi_{6800}(131,\cdot)\)
\(\chi_{6800}(371,\cdot)\)
\(\chi_{6800}(571,\cdot)\)
\(\chi_{6800}(891,\cdot)\)
\(\chi_{6800}(1091,\cdot)\)
\(\chi_{6800}(1331,\cdot)\)
\(\chi_{6800}(1371,\cdot)\)
\(\chi_{6800}(1491,\cdot)\)
\(\chi_{6800}(1731,\cdot)\)
\(\chi_{6800}(1931,\cdot)\)
\(\chi_{6800}(2691,\cdot)\)
\(\chi_{6800}(2731,\cdot)\)
\(\chi_{6800}(2811,\cdot)\)
\(\chi_{6800}(3091,\cdot)\)
\(\chi_{6800}(3291,\cdot)\)
\(\chi_{6800}(3611,\cdot)\)
\(\chi_{6800}(3811,\cdot)\)
\(\chi_{6800}(4091,\cdot)\)
\(\chi_{6800}(4171,\cdot)\)
\(\chi_{6800}(4211,\cdot)\)
\(\chi_{6800}(4971,\cdot)\)
\(\chi_{6800}(5171,\cdot)\)
\(\chi_{6800}(5411,\cdot)\)
\(\chi_{6800}(5531,\cdot)\)
\(\chi_{6800}(5571,\cdot)\)
\(\chi_{6800}(5811,\cdot)\)
\(\chi_{6800}(6011,\cdot)\)
\(\chi_{6800}(6331,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5951,1701,2177,1601)\) → \((-1,-i,e\left(\frac{1}{5}\right),e\left(\frac{1}{16}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 6800 }(1091, a) \) |
\(1\) | \(1\) | \(e\left(\frac{17}{80}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{17}{40}\right)\) | \(e\left(\frac{71}{80}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{9}{40}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{11}{80}\right)\) | \(e\left(\frac{51}{80}\right)\) | \(e\left(\frac{37}{80}\right)\) |
sage:chi.jacobi_sum(n)