Properties

Label 680.673
Modulus $680$
Conductor $85$
Order $16$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([0,0,12,3]))
 
Copy content pari:[g,chi] = znchar(Mod(673,680))
 

Basic properties

Modulus: \(680\)
Conductor: \(85\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{85}(78,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 680.cq

\(\chi_{680}(97,\cdot)\) \(\chi_{680}(113,\cdot)\) \(\chi_{680}(193,\cdot)\) \(\chi_{680}(313,\cdot)\) \(\chi_{680}(337,\cdot)\) \(\chi_{680}(377,\cdot)\) \(\chi_{680}(617,\cdot)\) \(\chi_{680}(673,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.16.698833752810013621337890625.1

Values on generators

\((511,341,137,241)\) → \((1,1,-i,e\left(\frac{3}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 680 }(673, a) \) \(1\)\(1\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{13}{16}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{5}{16}\right)\)\(1\)\(e\left(\frac{1}{8}\right)\)\(i\)\(e\left(\frac{1}{16}\right)\)\(e\left(\frac{5}{16}\right)\)\(e\left(\frac{15}{16}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 680 }(673,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 680 }(673,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 680 }(673,·),\chi_{ 680 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 680 }(673,·)) \;\) at \(\; a,b = \) e.g. 1,2