sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(680, base_ring=CyclotomicField(16))
M = H._module
chi = DirichletCharacter(H, M([0,0,12,3]))
pari:[g,chi] = znchar(Mod(673,680))
\(\chi_{680}(97,\cdot)\)
\(\chi_{680}(113,\cdot)\)
\(\chi_{680}(193,\cdot)\)
\(\chi_{680}(313,\cdot)\)
\(\chi_{680}(337,\cdot)\)
\(\chi_{680}(377,\cdot)\)
\(\chi_{680}(617,\cdot)\)
\(\chi_{680}(673,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((511,341,137,241)\) → \((1,1,-i,e\left(\frac{3}{16}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 680 }(673, a) \) |
\(1\) | \(1\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(i\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{15}{16}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)