sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(676, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([39,56]))
pari:[g,chi] = znchar(Mod(55,676))
Modulus: | \(676\) | |
Conductor: | \(676\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(78\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{676}(3,\cdot)\)
\(\chi_{676}(35,\cdot)\)
\(\chi_{676}(55,\cdot)\)
\(\chi_{676}(87,\cdot)\)
\(\chi_{676}(107,\cdot)\)
\(\chi_{676}(139,\cdot)\)
\(\chi_{676}(159,\cdot)\)
\(\chi_{676}(211,\cdot)\)
\(\chi_{676}(243,\cdot)\)
\(\chi_{676}(263,\cdot)\)
\(\chi_{676}(295,\cdot)\)
\(\chi_{676}(347,\cdot)\)
\(\chi_{676}(367,\cdot)\)
\(\chi_{676}(399,\cdot)\)
\(\chi_{676}(419,\cdot)\)
\(\chi_{676}(451,\cdot)\)
\(\chi_{676}(471,\cdot)\)
\(\chi_{676}(503,\cdot)\)
\(\chi_{676}(523,\cdot)\)
\(\chi_{676}(555,\cdot)\)
\(\chi_{676}(575,\cdot)\)
\(\chi_{676}(607,\cdot)\)
\(\chi_{676}(627,\cdot)\)
\(\chi_{676}(659,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((339,509)\) → \((-1,e\left(\frac{28}{39}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(15\) | \(17\) | \(19\) | \(21\) | \(23\) |
\( \chi_{ 676 }(55, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{41}{78}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{25}{78}\right)\) | \(e\left(\frac{2}{39}\right)\) | \(e\left(\frac{35}{78}\right)\) | \(e\left(\frac{77}{78}\right)\) | \(e\left(\frac{32}{39}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{5}{6}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)