sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(676, base_ring=CyclotomicField(156))
M = H._module
chi = DirichletCharacter(H, M([78,55]))
pari:[g,chi] = znchar(Mod(323,676))
Modulus: | \(676\) | |
Conductor: | \(676\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(156\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{676}(7,\cdot)\)
\(\chi_{676}(11,\cdot)\)
\(\chi_{676}(15,\cdot)\)
\(\chi_{676}(59,\cdot)\)
\(\chi_{676}(63,\cdot)\)
\(\chi_{676}(67,\cdot)\)
\(\chi_{676}(71,\cdot)\)
\(\chi_{676}(111,\cdot)\)
\(\chi_{676}(115,\cdot)\)
\(\chi_{676}(119,\cdot)\)
\(\chi_{676}(123,\cdot)\)
\(\chi_{676}(163,\cdot)\)
\(\chi_{676}(167,\cdot)\)
\(\chi_{676}(171,\cdot)\)
\(\chi_{676}(175,\cdot)\)
\(\chi_{676}(215,\cdot)\)
\(\chi_{676}(219,\cdot)\)
\(\chi_{676}(223,\cdot)\)
\(\chi_{676}(227,\cdot)\)
\(\chi_{676}(267,\cdot)\)
\(\chi_{676}(271,\cdot)\)
\(\chi_{676}(275,\cdot)\)
\(\chi_{676}(279,\cdot)\)
\(\chi_{676}(323,\cdot)\)
\(\chi_{676}(327,\cdot)\)
\(\chi_{676}(331,\cdot)\)
\(\chi_{676}(371,\cdot)\)
\(\chi_{676}(375,\cdot)\)
\(\chi_{676}(379,\cdot)\)
\(\chi_{676}(383,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((339,509)\) → \((-1,e\left(\frac{55}{156}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(15\) | \(17\) | \(19\) | \(21\) | \(23\) |
\( \chi_{ 676 }(323, a) \) |
\(1\) | \(1\) | \(e\left(\frac{17}{78}\right)\) | \(e\left(\frac{9}{52}\right)\) | \(e\left(\frac{35}{156}\right)\) | \(e\left(\frac{17}{39}\right)\) | \(e\left(\frac{127}{156}\right)\) | \(e\left(\frac{61}{156}\right)\) | \(e\left(\frac{37}{78}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{23}{52}\right)\) | \(e\left(\frac{1}{3}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)