sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(676, base_ring=CyclotomicField(26))
M = H._module
chi = DirichletCharacter(H, M([0,22]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(261,676))
         
     
    
  \(\chi_{676}(53,\cdot)\)
  \(\chi_{676}(105,\cdot)\)
  \(\chi_{676}(157,\cdot)\)
  \(\chi_{676}(209,\cdot)\)
  \(\chi_{676}(261,\cdot)\)
  \(\chi_{676}(313,\cdot)\)
  \(\chi_{676}(365,\cdot)\)
  \(\chi_{676}(417,\cdot)\)
  \(\chi_{676}(469,\cdot)\)
  \(\chi_{676}(521,\cdot)\)
  \(\chi_{676}(573,\cdot)\)
  \(\chi_{676}(625,\cdot)\)
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((339,509)\) → \((1,e\left(\frac{11}{13}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(15\) | \(17\) | \(19\) | \(21\) | \(23\) |       
    
    
      | \( \chi_{ 676 }(261, a) \) | 
      \(1\) | \(1\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(1\) | \(e\left(\frac{6}{13}\right)\) | \(1\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)
         
     
    
    
        
        sage:chi.gauss_sum(a)
         
     
    
    
        
        pari:znchargauss(g,chi,a)
         
     
    
    
        
        sage:chi.jacobi_sum(n)
         
     
    
    
        
        sage:chi.kloosterman_sum(a,b)