sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(676, base_ring=CyclotomicField(26))
M = H._module
chi = DirichletCharacter(H, M([13,18]))
pari:[g,chi] = znchar(Mod(183,676))
Modulus: | \(676\) | |
Conductor: | \(676\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(26\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{676}(27,\cdot)\)
\(\chi_{676}(79,\cdot)\)
\(\chi_{676}(131,\cdot)\)
\(\chi_{676}(183,\cdot)\)
\(\chi_{676}(235,\cdot)\)
\(\chi_{676}(287,\cdot)\)
\(\chi_{676}(391,\cdot)\)
\(\chi_{676}(443,\cdot)\)
\(\chi_{676}(495,\cdot)\)
\(\chi_{676}(547,\cdot)\)
\(\chi_{676}(599,\cdot)\)
\(\chi_{676}(651,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((339,509)\) → \((-1,e\left(\frac{9}{13}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(15\) | \(17\) | \(19\) | \(21\) | \(23\) |
\( \chi_{ 676 }(183, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(-1\) | \(e\left(\frac{12}{13}\right)\) | \(-1\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)