sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6660, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([9,9,0,4]))
pari:[g,chi] = znchar(Mod(71,6660))
\(\chi_{6660}(71,\cdot)\)
\(\chi_{6660}(971,\cdot)\)
\(\chi_{6660}(2051,\cdot)\)
\(\chi_{6660}(2771,\cdot)\)
\(\chi_{6660}(6191,\cdot)\)
\(\chi_{6660}(6371,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3331,3701,3997,3961)\) → \((-1,-1,1,e\left(\frac{2}{9}\right))\)
\(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(41\) | \(43\) |
\( \chi_{ 6660 }(71, a) \) |
\(1\) | \(1\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{17}{18}\right)\) | \(-1\) |
sage:chi.jacobi_sum(n)