Properties

Label 6660.103
Modulus $6660$
Conductor $6660$
Order $12$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6660, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([6,4,9,7]))
 
Copy content pari:[g,chi] = znchar(Mod(103,6660))
 

Basic properties

Modulus: \(6660\)
Conductor: \(6660\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 6660.ff

\(\chi_{6660}(103,\cdot)\) \(\chi_{6660}(3427,\cdot)\) \(\chi_{6660}(5083,\cdot)\) \(\chi_{6660}(6187,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: Number field defined by a degree 12 polynomial

Values on generators

\((3331,3701,3997,3961)\) → \((-1,e\left(\frac{1}{3}\right),-i,e\left(\frac{7}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(41\)\(43\)
\( \chi_{ 6660 }(103, a) \) \(-1\)\(1\)\(i\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{5}{6}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 6660 }(103,a) \;\) at \(\;a = \) e.g. 2