sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(66, base_ring=CyclotomicField(10))
M = H._module
chi = DirichletCharacter(H, M([0,8]))
pari:[g,chi] = znchar(Mod(25,66))
\(\chi_{66}(25,\cdot)\)
\(\chi_{66}(31,\cdot)\)
\(\chi_{66}(37,\cdot)\)
\(\chi_{66}(49,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((23,13)\) → \((1,e\left(\frac{4}{5}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 66 }(25, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(1\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)