sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(648, base_ring=CyclotomicField(54))
M = H._module
chi = DirichletCharacter(H, M([0,27,38]))
pari:[g,chi] = znchar(Mod(301,648))
| Modulus: | \(648\) | |
| Conductor: | \(648\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(54\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{648}(13,\cdot)\)
\(\chi_{648}(61,\cdot)\)
\(\chi_{648}(85,\cdot)\)
\(\chi_{648}(133,\cdot)\)
\(\chi_{648}(157,\cdot)\)
\(\chi_{648}(205,\cdot)\)
\(\chi_{648}(229,\cdot)\)
\(\chi_{648}(277,\cdot)\)
\(\chi_{648}(301,\cdot)\)
\(\chi_{648}(349,\cdot)\)
\(\chi_{648}(373,\cdot)\)
\(\chi_{648}(421,\cdot)\)
\(\chi_{648}(445,\cdot)\)
\(\chi_{648}(493,\cdot)\)
\(\chi_{648}(517,\cdot)\)
\(\chi_{648}(565,\cdot)\)
\(\chi_{648}(589,\cdot)\)
\(\chi_{648}(637,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((487,325,569)\) → \((1,-1,e\left(\frac{19}{27}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
| \( \chi_{ 648 }(301, a) \) |
\(1\) | \(1\) | \(e\left(\frac{37}{54}\right)\) | \(e\left(\frac{7}{27}\right)\) | \(e\left(\frac{35}{54}\right)\) | \(e\left(\frac{7}{54}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{20}{27}\right)\) | \(e\left(\frac{10}{27}\right)\) | \(e\left(\frac{29}{54}\right)\) | \(e\left(\frac{2}{27}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)