Properties

Label 640332.2795
Modulus $640332$
Conductor $640332$
Order $1386$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(640332, base_ring=CyclotomicField(1386)) M = H._module chi = DirichletCharacter(H, M([693,1309,858,1134]))
 
Copy content pari:[g,chi] = znchar(Mod(2795,640332))
 

Basic properties

Modulus: \(640332\)
Conductor: \(640332\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(1386\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 640332.bht

\(\chi_{640332}(23,\cdot)\) \(\chi_{640332}(2531,\cdot)\) \(\chi_{640332}(2795,\cdot)\) \(\chi_{640332}(5303,\cdot)\) \(\chi_{640332}(8075,\cdot)\) \(\chi_{640332}(8339,\cdot)\) \(\chi_{640332}(11111,\cdot)\) \(\chi_{640332}(13619,\cdot)\) \(\chi_{640332}(13883,\cdot)\) \(\chi_{640332}(16391,\cdot)\) \(\chi_{640332}(16655,\cdot)\) \(\chi_{640332}(19163,\cdot)\) \(\chi_{640332}(19427,\cdot)\) \(\chi_{640332}(21935,\cdot)\) \(\chi_{640332}(22199,\cdot)\) \(\chi_{640332}(24707,\cdot)\) \(\chi_{640332}(27479,\cdot)\) \(\chi_{640332}(27743,\cdot)\) \(\chi_{640332}(30515,\cdot)\) \(\chi_{640332}(33023,\cdot)\) \(\chi_{640332}(33287,\cdot)\) \(\chi_{640332}(35795,\cdot)\) \(\chi_{640332}(38567,\cdot)\) \(\chi_{640332}(38831,\cdot)\) \(\chi_{640332}(41339,\cdot)\) \(\chi_{640332}(41603,\cdot)\) \(\chi_{640332}(44111,\cdot)\) \(\chi_{640332}(46883,\cdot)\) \(\chi_{640332}(47147,\cdot)\) \(\chi_{640332}(49919,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{693})$
Fixed field: Number field defined by a degree 1386 polynomial (not computed)

Values on generators

\((320167,450605,339769,179929)\) → \((-1,e\left(\frac{17}{18}\right),e\left(\frac{13}{21}\right),e\left(\frac{9}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 640332 }(2795, a) \) \(1\)\(1\)\(e\left(\frac{305}{1386}\right)\)\(e\left(\frac{430}{693}\right)\)\(e\left(\frac{113}{154}\right)\)\(e\left(\frac{9}{22}\right)\)\(e\left(\frac{475}{693}\right)\)\(e\left(\frac{305}{693}\right)\)\(e\left(\frac{1381}{1386}\right)\)\(e\left(\frac{17}{198}\right)\)\(e\left(\frac{194}{231}\right)\)\(e\left(\frac{221}{1386}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 640332 }(2795,a) \;\) at \(\;a = \) e.g. 2