Properties

Label 640332.10453
Modulus $640332$
Conductor $160083$
Order $3465$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(640332, base_ring=CyclotomicField(6930)) M = H._module chi = DirichletCharacter(H, M([0,770,3300,6174]))
 
Copy content pari:[g,chi] = znchar(Mod(10453,640332))
 

Basic properties

Modulus: \(640332\)
Conductor: \(160083\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(3465\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{160083}(10453,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 640332.blo

\(\chi_{640332}(25,\cdot)\) \(\chi_{640332}(625,\cdot)\) \(\chi_{640332}(1285,\cdot)\) \(\chi_{640332}(1633,\cdot)\) \(\chi_{640332}(1885,\cdot)\) \(\chi_{640332}(2293,\cdot)\) \(\chi_{640332}(2545,\cdot)\) \(\chi_{640332}(2797,\cdot)\) \(\chi_{640332}(4057,\cdot)\) \(\chi_{640332}(4405,\cdot)\) \(\chi_{640332}(4657,\cdot)\) \(\chi_{640332}(4909,\cdot)\) \(\chi_{640332}(5317,\cdot)\) \(\chi_{640332}(6169,\cdot)\) \(\chi_{640332}(7177,\cdot)\) \(\chi_{640332}(7681,\cdot)\) \(\chi_{640332}(7837,\cdot)\) \(\chi_{640332}(8089,\cdot)\) \(\chi_{640332}(8341,\cdot)\) \(\chi_{640332}(8941,\cdot)\) \(\chi_{640332}(9601,\cdot)\) \(\chi_{640332}(10201,\cdot)\) \(\chi_{640332}(10453,\cdot)\) \(\chi_{640332}(10609,\cdot)\) \(\chi_{640332}(10861,\cdot)\) \(\chi_{640332}(11113,\cdot)\) \(\chi_{640332}(11713,\cdot)\) \(\chi_{640332}(12373,\cdot)\) \(\chi_{640332}(12973,\cdot)\) \(\chi_{640332}(13225,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{3465})$
Fixed field: Number field defined by a degree 3465 polynomial (not computed)

Values on generators

\((320167,450605,339769,179929)\) → \((1,e\left(\frac{1}{9}\right),e\left(\frac{10}{21}\right),e\left(\frac{49}{55}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 640332 }(10453, a) \) \(1\)\(1\)\(e\left(\frac{1013}{3465}\right)\)\(e\left(\frac{2027}{3465}\right)\)\(e\left(\frac{87}{385}\right)\)\(e\left(\frac{52}{55}\right)\)\(e\left(\frac{472}{693}\right)\)\(e\left(\frac{2026}{3465}\right)\)\(e\left(\frac{2869}{3465}\right)\)\(e\left(\frac{86}{495}\right)\)\(e\left(\frac{373}{1155}\right)\)\(e\left(\frac{1811}{3465}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 640332 }(10453,a) \;\) at \(\;a = \) e.g. 2